

2

8/19/18

RANGE OF APPLICATIONS

']
-
- o ’
Speaker Speech
Diarization Recognition

Recommender

e

Computer Vision
CNNs

Natural Language Processing
Sequence to sequence

Translation Sentiment Analysis

Others

GamePlay 8/19/18 @

AGENDA

Fundamentals of training
=Architecture features for training
=Scaling of training
Benchmarking

BASICS OF GRADIENT DESCENT TRAINING

Sebastian Ruder, “An overview of gradient descent optimization algorithms” arXiv:1609.04747 15 Jun 2017

https://arxiv.org/pdf/1609.04747.pdf

2.00
175

150

8/19/18 @

<«—— gradients

Zi1 Z Zin \ Zip Zi3
Wi / Wisg w i+2\ Wiss
5 8—e 9 o
gil & 8ir1 iz i3
<«—— gradients

Simon Knowls, “Graphcore Intelligent Processing Unit (IPU)” Deep Learning at Supercomputer Scale Workshop, NIPS-117. 8/19/18 (Cﬁ
https://www.matroid.com/scaledml/2018/simon.pdf

HYPER

PARAMETERS & MACHINERY

Machinery Parameters into machinery
»Normalizers »Learning rate
»Loss functions *Momentum
»Optimizers "Decay

»>Batch size

LEARNING RATE

Fd
1.00
0.75
0.50
0.25
0.00
-0.25 X
-0.50
-0.25 -0.75
-0.50
-0 ?5_1_ﬂﬂ—1.ﬂﬂ
Sebastian Ruder, “An overview of gradient descent optimization algorithms” arXiv:1609.04747 15 Jun 2017 8/19/18 ‘cs

https://arxiv.org/pdf/1609.04747.pdf

GRADIENT SURFACE

Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, Tom Goldstein,
“VISUALIZING THE LOSS LANDSCAPE OF NEURAL NETS” arXiv:1712.09913v2 [cs.LG] 5 Mar 2018 8/19/18 ‘CQ
https://www.cs.umd.edu/~tomg/projects/landscapes/

56D OPTIMIZERS

- SGD
- Momentum
= NAG

\\ — SGD

o = Momentum

TrrrTrTrrr

ween NAG
— Adagrad — Adagrad
7,; S, Adadelta Adadelta

4 W LTy
Y el 7 Rmsprop
. oy

o
e b
e e, S

Rmsprop

1.0

-1.5

Sebastian Ruder, “An overview of gradient descent optimization algorithms” arXiv:1609.04747 15 Jun 2017 8/19/18 <C10
https://arxiv.org/pdf/1609.04747.pdf

GENERALIZATION AND OVERFITTING

Degree 1
MSE = 4.08e-01(+/- 4.25e-01)

— Model
True function

e Samples

Degree 4
MSE = 4.32e-02(+/- 7.08e-02)

— Model
True function

e Samples

Degree 15
MSE = 1.82e+08(+/- 5.45e+08)

http://scikit-learn.org/stable/auto_examples/model_selection/plot_underfitting overfitting.html

— Model
True function

e Samples

8/19/18 Cu

ARCHITECTURAL ATTRIBUTES

Parallelism

<Data parallelism
= Coarse grain
" Sparsity = Mini-batch size

= Amortizing the cost of
communication latency

= Fine grain
= SIMD

<+Model parallelism
= Granularity of network chunks

8/19/18 @12

= Parallelism
= Precision, Quantization

DATA V3. MODEL PARALLELISM

Data Parallel

Model Parallel

http://chainermn.readthedocs.io/en/v1.0.0b2_a/tutorial/overview.html
© Copyright 2017 Preferred Networks, inc.. Revision 2a654771.

Forward

]:[Backward]:[Optimize]:>

g

Forward]: Backward ' Optimize
L.
Forward]t Backward All-Reduce ' Optimize
o
Forward]t Backward ' Optimize
\ v, > v,
Data Parallel

8/19/18 @

NAVEV

STOCHASTIC GRADIENT DESCENT

- GEMV

= Inherently inefficient

= Requirements
= Broadcast (systolic /non-systolic)
= Reduction

| b |

c=Ab

Yuanfang Li, Ardavan Pedram,“CATERPILLAR: Coarse Grain Reconfigurable Architecture for Accelerating the Training of Deep Neural Networks,”’ 8/19/18 Cl 4
IEEE-ASAP2017. https://arxiv.org/abs/1706.00517

BATCHED GRADIENT DESCENT

= Data parallelism
= GEMV-> GEMM
= GEMM: Memory efficient kernel
= # of weight updates / batch size

Yuanfang Li, Ardavan Pedram,“CATERPILLAR: Coarse Grain Reconfigurable Architecture for Accelerating the Training of Deep Neural Networks,”’ 8/19/18 cl 5
IEEE-ASAP2017. https://arxiv.org/abs/1706.00517

PIPELINED BACKPROPAGATION

= Pipeline parallelization
= Pipelining inputs x hy h, hy
= Layer locality o
= More efficient GEMVs
= Smaller reduction tree

= Weight temporal locality

= Update and consume immediately

Yuanfang Li, Ardavan Pedram,“CATERPILLAR: Coarse Grain Reconfigurable Architecture for Accelerating the Training of Deep Neural Networks,” 8/19/18 CIG
The 28th IEEE International Conference on Application-specific Systems, Architectures and Processors (ASAP2017).
https://arxiv.org/abs/1706.00517

WHAT DO WE NEED T0O SUPPORT?

= GEMIM.: General Matrix Matrix multiplication
= GEMV: General Matrix Vector multiplication

= Collective communications
= Gather
= Reduce
= All gather
= All reduce
= Broadcast
= All-to-All

8/19/18 @1

PRECISION AND SPARSITY

Precision for FPUs Sparsity
=Distribution of scales = Activation sparsity
=Loss scaling =Weight sparsity

SCALES OF VALUES VARY WIDELY

4/\ Epoch O

(a) Weights Epoch 164
(b) Activations A

(c) Weight updates

g 24 EP P 0 : 16

Base-2 logarithm of absolute value

Urs Koster, Tristan J. Webb, Xin Wang, Marcel Nassar, Arjun K. Bansal, William H. Constable, Oguz H. Elibol, Scott Gray, Stewart
Hall, Luke Hornof, Amir Khosrowshahi, Carey Kloss, Ruby]. Pai, Naveen Rao, “Flexpoint: An Adaptive Numerical Format for Efficient
Training of Deep Neural Networks” Neural Information Processing Systems (NIPS) 2017. https://arxiv.org/abs/1711.02213

8/19/18 ((19

WE ARE MISSING THE RANGE WITH FP16

actijation gradi :nt magnitudes

64
32
16

P N

1/2
1/4
1/8
1/16
1/32
1/64
1/128
1/256
1/512
1/1024
1/2048

— Unused

Percentage of values during training

Upper bound, 2 to the listed expone

< —
Overall FP16 range T @,

Paulius Micikevicius, Sharan Narang, Jonah Alben, Gregory Diamos, Erich Elsen, David Garcia, Boris Ginsburg, Michael Houston,
Oleksii Kuchaiev, Ganesh Venkatesh, Hao Wu, “Mixed Precision Training”, ICLR 2018. https://arxiv.org/abs/1710.03740

SPARSITY HAS MANY FLAVORS

= Activation Sparsity
= RELU / MAXPOOL (on back propagation)

Irregular = Regular
re e : . h u E . .
= Block sparsity
Fine-grained Vector-level Kernel-level Filter-level
Sparsity(0-D) Sparsity(1-D) Sparsity(2-D) Sparsity(3-D)

= Weight Sparsity

= Fine grain

= Per row

= Per column
» Per kernel

» Per filter

Huizi Mao, Song Han, Jeff Pool, Wenshuo Li, Xingyu Liu, Yu Wang, William J. Dally, Exploring the Granularity of Sparsity in 8/19/18 C21
Convolutional Neural Networks” CVPR’17 TMCV workshop. https://arxiv.org/abs/1705.08922

RNNS & CNNS BENEFIT FROM STRUCTURED SPARSITY

«RNNs [1]
= 90% sparsity reduces relative accuracy by 10% to 20%
= Solution: Make the sparse model larger
= Large sparse model still have less parameters compared to the small
dense baseline and achieves a slight increase in accuracy

« CNNs [2]
= Pruning with large granularity will greatly hurt accuracy
= Due to index savings, coarse-grain pruning can still achieve space
savings even at a lower overall sparsity

https://arxiv.org/abs/1704.05119
[2]- Huizi Mao, Song Han, Jeff Pool, Wenshuo Li, Xingyu Liu, Yu Wang, William]. Dally,* Exploring the Granularity of Sparsity in Convolutional

[1]- Sharan Narang, Erich Elsen, Gregory Diamos, Shubho Sengupta, “Exploring Sparsity In Recurrent Neural Network”, ICLR 2017.
8/19/18 ((((z2
Neural Networks” CVPR’17 TMCYV workshop. https://arxiv.org/abs/1705.08922

OF TRI

INING

=Scaling the problem: Same system, bigger network
= Memory bottleneck

= Cost of computation vs. communication

=Scaling the system: Bigger system
=Synchronization bottleneck
=Data communication on the cloud
= Cloud scale synchronized SGD
= Asynchronous SGD

8/19/18 @

OVERCOME MEMORY WALL WITH MEMORY HIERARCHY

Processor-DRAM Memory Gap

100,000

pProc 1.20/yr.

“Moore’s Law”
0 01010 I T ™ - PP

pProc 1.52/yr.

g 1,000 |

5 DRAM

g T1%/yr.

c 100 (2X/10 yrs)
Performance Gap:
(grows 50% / year) —

10 T -4

1995 2000 2005 2010

Year

* 1980: no cache in micro-processor; 2010: 3-level cache on chip, 4-level cache off chip
» 1989 the first Intel processor with on-chip L1 cache was Intel 486, 8KB size
» 1995 the first Intel processor with on-chip L2 cache was Intel Pentium Pro, 256KB size
» 2003 the first Intel processor with on-chip L3 cache was Intel Itanium 2, 6MB size
8/19/18 @1

1980 1985 1990

John Hennessy, David Patterson, “Computer Architecture A Quantitative Approach”, Morgan Kaufman. ISBN-13: 978-8178672663

MEMORY ACCESS IS >500x ARITHMETIC ENERGY

Operation 16 bit (integer) 64 bit (DP-FP)

E/op PJ vs.Add E/op PJ vs. Add
ADD 0.18 1.0 x) 1.0 x
Multiply 0.62 3.4 x 20 4.0 x
16-Word Register File |0.12 0.7 X 0.34 0.07 x
64-Word Register File |0.23 1.3 x 0.42 0.08 x
4 K-word SRAM 8 44 x 26 5.2 X
32 K-word SRAM 11 61 x 47 9.4 x
DRAM 640 - 2560 -

Optimization in the Dark Silicon Era,” IEEE Design and Test Magazine Special Issue on Dark Silicon, April 2017.

Ardavan Pedram, Stephen Richardson, Sameh Galal, Shahar Kvatinsky, and Mark A. Horowitz, “Dark Memory and Accelerator-Rich System 8/19/18 C(CZ5
https://arxiv.org/pdf/1602.04183.pdf

GEMM ACCELERATORS 10x MORE EFFICIENT

GFLOPS | W/mm? GFLOPS/mm? GFLOPS/W Utilization
Cell BE (SP) 200 0.3 1.5 5 88%
NVidia GTX480 SM (SP) 780 0.2 0.9 5.2 70%
NVidia GTX480 SM (DP) 390 0.2 0.4 2.6 70%
Intel Core-i7 960 (SP) 96 0.4 0.5 1.2 95%
Intel Core-i7 960 (DP) 48 0.4 0.25 0.6 95%
Altera Stratix IV (DP) 100 0.02 0.05 3.5 90+%
ClearSpeed CSX700 (DP) 75 0.02 0.2 12.5 78%
Linear Algebra Processor (SP) 1200 0.2 6-11 55 90+%
Linear Algebra Processor (DP) 600 0.2 3-5 25 90+%

45nm scaled power / performance @ 1.4GHz for equivalent throughput

Ardavan Pedram, Robert van de Geijn , Andreas Gerstlauer “Codesign Tradeoffs for High-Performance Low-Power Linear Algebra Architectures,” 8/19/18
IEEE Transactions on Computers, Special Issue On Energy Efficient Computing, August 2012.

@

VOLTA: GPU INFUSED WITH GEMM CORES

21B transistors
815 mm?2

80 SM
5120 CUDA Cores
640 Tensor Cores

16 GB HBM2
900 GB/s HBM2
300 GB/s NVLink

rrrrrrrr
N¥Limk MNVLink Ink W¥Link

ink H':Ijni.
*full GV100 chip con 84
https://www.servethehome .com/nvidia-v100-volta-u pdate-hot-chips-2017/ 8/19/18 C(Cz-z

TPU2: GEMM SYSTOLIC ARR

e 16 GB of HBM

e 600 GB/s mem BW

e Scalar unit: 32b float

o MXU: 32b float
accumulation but
reduced precision for
multipliers

e 45 TFLOPS

https://www.matroid.com/scaledml/2018/jeff.pdf

HBM
8 GB

core

scalar unit

128x128

core

scalar unit

MXU

128x128

HBM
8 GB

8/19/18 @3

ACTIVATIONS TAKE MOST OF THE MEMORY

40000

36000 m Workspace
32000 Gradient maps
[a) M Feature maps
= 28000 .
Y 54000 ® Weights
§ A Feature maps (%)
= 20000
?.'
g 16000
Q A
£ 12000 A
2 8000
© 4000 e

0 _4—_'_- :
B\ B\
Q} &Q’L
X
Q éb %el
\‘5& A‘?jg @’@
e @) (900

Minsoo Rhu, Natalia Gimelshein, Jason Clemons, Arslan Zulfigar, Stephen W. Keckler, “vDNN: Virtualized Deep Neural Networks for

Scalable, Memory-Efficient Neural Network Design” IEEE MICRO-49, 2016. https://arxiv.org/pdf/1602.08124.pdf

100%

80%

60%

40%

20%

0%

Percentage of feature maps

8/19/18 @

STORAGE IS QUADRATIC FUNCTION OF NETWORK DEPTH

Layers

Time
Feature Maps Generation

Forward

hﬁ
=

|
~|

J
-
Feature Maps Reuse
v
, , s/10/18 ({(Go
Hongyu Zhu, “How to Train a Very Large and Deep Model on One GPU?”, April 2017.
https://medium.com/syncedreview/how-to-train-a-very-large-and-deep-model-on-one-gpu-7b7edfe2d072

RECOMPUTE WHAT YOU CAN'T REMEMBER

activations ——

= Recursive Checkpointing

* Recompute the Activations @ @ @ @
from sparse snapshots
e & g @

= Trade most storage for one
repeat of forwards pass

compute 7 7 7 pd pad
7 7 7

/ Wi i+?_\ Wis

pd "—. 7 pd

8i1 g g3

<—— gradients

Simon Knowls, “Graphcore Intelligent Processing Unit (IPU)” Deep Learning at Supercomputer Scale Workshop, NIPS-117. 8/19/18 @1
https://www.matroid.com/scaledml/2018/simon.pdf

25% MORE COMPUTE SAVES 80% MEMORY

1600
Naive strategy: memorize D .
activations only at input of 1400 ense Net
each residue block MiB l/

~1/5 memory

less greedy

1200 /

1000
Batch=16 executing on CPU,
recording total memory 800 -
allocated for weights +
activations. 600 -
f16 weights and activations, 400 -
single weight copy. recomputed

200

| =R

time ~1.25x compute
Simon Knowls, “Graphcore Intelligent Processing Unit (IPU)” Deep Learning at Supercomputer Scale Workshop, NIPS-117. 8/19/18 (@2
https://www.matroid.com/scaledml/2018/simon.pdf

SCALING THE SYSTEM

| }

NIC CPU NiC NIC CPU NIC
e P e
T T g LI LTI
Ti : ! 4
—00— —00—
PCle Switches PCle Switches

Mark Harris, “NVIDIA DGX-1: The Fastest Deep Learning 8/19/18 ‘@3
NVLink —— PCle QPI System”, April 2017.

LATENCY IS A BOTTLENECK

UltraFast — — — — — - Very Fast Fast — — — — — — — -~ VerySlow — — — — — —

InfiniBand Fthernet -

A3CUBE
icrosegonds Milliseconds
1 Nanosecand 1 Milisccond /1000 dpmbiay e
o —
3 |5 2 |g
=] 4 o o7
%- E :& E E o” E T E E L {¥] Cray Latency Source:
E E (] J o E S| E T v ﬁ httos:/awew, nersc, govyassets/ Uploads/NERS
% E E E E e @ = E E =l C.¥XC30.overview. pdf
A3CUBE: “Latency Matters”, © A3CUBE INC 8/19/18 C‘GM
http://www.a3cube-inc.com/-latency-matters.html

DISTRIBUTED SGD EXPLOITS DATA PARALLELISM

= Entire model on each processor

= Distribute the SGD batch evenly
across each processor

(aka per-processor batch):

= 1024 batch distributed over
16 PEs

= Batch of 64/PE

Core

Aggregation

-

Edge

= Communicate gradient updates
all-to-all

1 2 15 16
1024 m 64
(Data center picture from)
Mohammad Al-Fares, Alexander Loukissas, Amin Vahdat, 8/19/18 (@5
“A scalable, commodity data center network architecture” ACM

SIGCOMM 2008 conference on Data communication.

RIBUTED TRAINING

ROOFLINE MODEL FOR DIST

A ' ' . .
2sea1-Ganeric Maching 2560 £ Generic Machine 2560 1 Generic Machine
128.0 128.0 128.0
64.0 640 T
3 g 320 § 320
2 320 5 g
0 T 16.0 9 160
J 16,0 2 2
3 £ 80 T 80
e 80 © S
'% . ® 4.0 = 4.0
% 4.0 20 20
20 1.0 1.0
0.5 >
10 0.5 ua 1;4 1‘{2 1 2 4 8 16)' 1;8 1;4 1;2 1 2 4 8 16
0.5 actual flop:byte ratio actual flop:byte ratio

(b) maximizing bandwidth (P) maximizing bandwidth
mi=i : Interconnect network BW Node locality

(b) maximizing,bandwidth DRAM BW Exploit sparsity

Less comm / synch

actual flop:byte ratio

Samuel Williams, Andrew Waterman, and David Patterson, “Roofline: An Insightful Visual Performance Model for Floating-Point 8/19/18 @6
Programs and Multicore Architectures”. Communications of the ACM April 2008. (

BULK SYNCHRONOUS SGD

1
e

2
—

T

—_—

—

INTERCONNECT NETWORK

e Synchronization bottleneck

All-to-All

9 10

Barrier Synchronization

15
‘ 64

16

e Various approach to ameliorate this but the problem is inherent

Rogers, R. O., and David B. Skillicorn. "Using the BSP cost model to optimise parallel neural network
training." International Parallel Processing Symposium. Springer Berlin Heidelberg, 1998.

8/19/18 @1

WE MUST INCREASE THE BATCH SIZE -
Nx64

—_— — T
INTERCONNECT NETWORK

All-to-All

Barrier Synchronization

1 2 N-1 N
o
o If we want to keep scaling synchronous SGD then we have to keep
increasing the batch size

e N=256 -> Batch Size=16I<

8/19/18 @3

OVERLAP COMN

10 HIDE NETWORK LATENCY

—@-Fccd-forward Time
Backpropagation Time
Measurable Communication Time
Communication Time

» Breakdown for VGG
= Minibatch 256

Sunwoo Lee, Dipendra Jha, Ankit Agrawal, Alok Choudhary,
and Wei-keng Liao, “Parallel Deep Convolutional Neural
Network Training by Exploiting the Overlapping of Computation
and Communication “, IEEE 24th International Conference on
High Performance Computing, 2017.

Das, Dipankar, Sasikanth Avancha, Dheevatsa Mudigere,
Karthikeyan Vaidynathan, Srinivas Sridharan, Dhiraj Kalamkar,
Bharat Kaul, and Pradeep Dubey. "Distributed deep learning
using synchronous stochastic gradient descent." arXiv preprint
arXiv:1602.06709 (2016).

Execution Time (Sec)

100.000000
10.000000
1.000000
0.100000
0.010000
0.001000
0.000100
0.000010
0.000001

q’/\
K&

[UNICATION AND COMPUTE

/
/
/
/
/
/
/
/
/
/
>) o) PN)) o)
NSO 2 RCN A YN N
O \ \-
v X S \(O n;\/Q ‘QVQ/ %oo\b‘

N

Number of nodes (Number of cores) 8/19/18 @

DON'T DECAY THE LEARNING RATE, INCREASE THE BATCH SIZE

= The key difficulty 0ss 4 I

= Numerical optimization

090

= Decrease # of parameter
updates

curacy

= Batch Size vs. learning rate S oss
= CIFAR-10 & Imagenet
= Not general enough

Test set

- Qriginal training schedule

- |ncreasing batch size

- |ncreased initial learning rate
- |ncreased momentum coefficient

0.80

0.75
0 20000 40000 60000 80000

Number of parameter updates

Samuel L. Smith, Pieter-Jan Kindermans, Chris Ying, Quoc V. Le,” Don't Decay the Learning Rate, Increase the Batch Size,” ICLR 2018. 8/19/18 ‘Go
https://arxiv.org/abs/1711.00489

LAYER-WISE ADAPTIVE LEARNING RATE

RESNET-50 WITH LARS: B> 32K

. |]
LA'RS' ImageNet by ResNet50 without Data Augmentation

0.8

- Adapts the learning rate for 07
each layer

=
o

=
Ln

- dScaling to
B=8K for Alexnet
B=32K for Resnet-50.

=
L

Top-1 Test Accuracy
=

/ | : _
. oaf/ A A"‘ 5 — Batch=3 =2.9, warmu '
Above 32K without accuracy /1 N E s
loss is still open problem “-1j [/ Batch=G, LR=6.4, warmus
0.0E i ,

Epochs

You, Yang, Igor Gitman, and Boris Ginsburg. "Scaling SGD Batch Size to 32K for ImageNet Training." arXiv preprint arXiv:1708.03888 (2017).

You, Yang, Zhao Zhang, C. Hsieh, James Demmel, and Kurt Keutzer. "ImageNet training in minutes." ICPP 2018. 8/19/18 1
https://arxiv.org/abs/1709.05011 C

RECENT PROGRESS

Training a DNN (ResNet50) on ImageNet requires
120 hours on a SINGLE Maxwell Titan X

~
ﬁ 100 Now just 8.7 minutes
(o)
5 ~
Q 5000 x
E 10 amazon speedup
opu]
B
(o))
: N I
‘% 1 %Am
> @
=
Tencent
0.1 IRE
128 200 1024

Of Nodes 8/19/18 @42

PUSHING SYNCHRONOUS SGD FARTHER

Tencent
1024 GPU
UC Berkeley Pref d B=64K
" Y Preferre
SurfSara Yang You Networks lgezsNe.tSO
ResNet-50 AlexNet 256 Gpy ©O-© THHAS
512 768 KNLs 1024 CPUs B=32K
Sync SGD B=32K ResNet50
256 Facebook Batcl:t: 12K 11 mins 15 mins Fast.Al
ResNet-50 40 mins ResNet50 Resnet
Inception V3 Amazon [1] Sync SGD B=16K AWS
128 U.CB 200 K40 Incention v3 NVLink 31 mi B=dynamic
FireCatffe gync SGD @ b Batch: 8k minutes 18 mins
GoogLeNet 500 (95 MB) 1 hour ResNet50
(53MB) 299 128 K80 esNe
128 K20 Interconnect Sync SGD
Cray 22.94 hours 2002’8
32 | Gemini Interconnect
Batch: 1024 6.57 hours
10.5 hours
10/15 4/16 11/16 06/117 09/17 11/17 11/17 1/18 8/18

C
8/19/18

LARGE B

ATCHES MISS THE MINIMUM

Large Batch

Dominic Masters, Carlo Luschi, “Revisiting Small Batch Training for Deep Neural Networks” arXiv:1804.07612 2017. 8/19/18 (@ 4
https://www.graphcore.ai/posts/revisiting-small-batch-training-for-deep-neural-networks

ITCHS MISS TEST ACCURACY

LARGE BI

Reduced AlexNet ResNet-32 ResNet-32
(noBN, CIFAR-10, noAug) (BN, CIFAR-10, Aug) (BN, CIFAR-100, Aug)

20
@ 2
o
x 21
=
£ >-6
© -8
3 2
Q
% 2—10
o

2—12

VTCSAESESFE VUCSNESENFE VUCENERERSS
Batch Size Batch Size Batch Size
Within x% of Best Test Accuracy
Il O05% 1% M 2% W 5% 10% 20%
Dominic Masters, Carlo Luschi, “Revisiting Small Batch Training for Deep Neural Networks” arXiv:1804.07612 2017. 8/19/18 (@5
https://arxiv.org/abs/1804.07612

SCALING TRAINING WITH LARGE BATCHES

Cons Pros

= Constrained approach: Need =Robust: Relatively less
to employ large batches to hyperparameter tuning

capture efficiency = Sequential consistency

 May not achieve target » Good infrastructural support

accuracy from HPC frameworks (IMPI)

= Only demonstrated on CNNs _ Fault tolerance is practically

= More prone to adversarial handled by snapshots and
attacks[1] rollback otherwise
[1] ZheweiYao, Amir Gholami, Qi Lei , Kurt Keutzer, Michael Mahoney,
‘““Hessian-based Analysis of Large Batch Training and Robustness to Adversaries”, arXiv:1802.08241v. 8/19/18 @ﬁ
https://arxiv.org/pdf/1802.08241.pdf

[1]-
[2] -
[3]-
[4]-
[51-

ASYNCHRONOUS 56D

- Hogwild![1]

= Asynchronous on shared memory

= Distributed asynchronous SGD
= Googles training (Dist belief)[2]
= Accuracy has degraded at large scaling >32 [3,4]

= Deep gradient compression|[9]

Feng Niu, Benjamin Recht, Christopher R’e and Stephen J. Wright, “Hogwild!: A Lock-Free Approach to Parallelizing Stochastic
Gradient Descent”, NIPS 2011. https://people.eecs.berkeley.edu/~brecht/papers/hogwildTR.pdf

Jeffrey Dean, Greg S. Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Quoc V. Le, Mark Z. Mao, Marc’Aurelio Ranzato, Andrew Senior,
Paul Tucker, Ke Yang, Andrew Y. Ng , “Large Scale Distributed Deep Networks”. https://ai.google/research/pubs/pub40565

Zhang, Sixin, Anna E. Choromanska, and Yann LeCun. "Deep learning with elastic averaging SGD." In Advances in Neural Information
Processing Systems, pp. 685-693. 2015.

Jin, Peter H., Qiaochu Yuan, Forrest Iandola, and Kurt Keutzer. "How to scale distributed deep learning?." arXiv preprint
arXiv:1611.04581 (2016). NIPS MLSys 2017.

Yujun Lin, Song Han, Huizi Mao, Yu Wang, William J. Dally, “Deep Gradient Compression: Reducing the Communication Bandwidth for
Distributed Training” ICLR 2018. https://arxiv.org/abs/1712.01887

8/19/18

HOGWILD!

Other processors

o

¥ - L4 v time

x A X X

Read current x

Compute update
Write to current x

Viewpoint of a sinale processor

Feng Niu, Benjamin Recht, Christopher R’e and Stephen]J. Wright, “Hogwild!: A Lock-Free Approach to Parallelizing Stochastic Gradient 8/19/18 ‘Gg
Descent”, NIPS 2011. https://people.eecs.berkeley.edu/~brecht/papers/hogwildTR.pdf

DEEP GRADIENT COMPRESSION

HEER HEER [Illl}
/\o» // \\ // \

= = — — — < — =
Data Data Data Data Data Data Data Data

More Training Nodes Deep Gradient Compression
| | | | | |
Time: computation | computation | |
: communication : : communication :
[| I [

Yujun Lin, Song Han, Huizi Mao, Yu Wang, William J. Dally, “Deep Gradient Compression: Reducing the Communication Bandwidth 8/19/18 ‘@9
for Distributed Training” ICLR 2018. https://arxiv.org/abs/1712.01887

“If we all worked on the assumption that
what is accepted as true is really true,
there would be little hope of advance.” Orville Wright

RurhalHamgjetcEngine
* Propeller engitie

™

2. Bv RichardWheeler from wikipedia

1. https://imgur.com/gallery/79000/comment/12698133 8/19/18 @0

https://imgur.com/gallery/79Qo0/comment/12698133
http://www.richardwheeler.net/

FUTURE OF RCCELERATED TRAINING

= Increase physical scale to support model parallelism
= Architectures to improve communication and memory bandwidth
= Dedicated silicon area to neural network compute

= Exploit sparsity

Keep an eye out for companies that will contribute to cloud training

ﬂﬁa
8/19/18 @l

BENCHMARKING ML

TYPES OF ML BENCHMARKS: QUALITY

= Quality Benchmarks: measure the accuracy of networks

= ImageNet: Fei-Fei Li 2012, 1.2M image standard dataset for measuring classification accuracy as well as a yearly
competition

= Revolutionized image classification
= Mnist: hand written digit dataset
= CIFAR: small image classification

= Many more:
https://en.wikipedia.org/wiki/List_of datasets_for_machine_learning research#Object_detection_and_recognition

Multivariate data 8/19/18 @53

https://en.wikipedia.org/wiki/List_of_datasets_for_machine_learning_research#Image_data
https://en.wikipedia.org/wiki/List_of_datasets_for_machine_learning_research#Text_data
https://en.wikipedia.org/wiki/List_of_datasets_for_machine_learning_research#Sound_data
https://en.wikipedia.org/wiki/List_of_datasets_for_machine_learning_research#Signal_data
https://en.wikipedia.org/wiki/List_of_datasets_for_machine_learning_research#Physical_data
https://en.wikipedia.org/wiki/List_of_datasets_for_machine_learning_research#Biological_data
https://en.wikipedia.org/wiki/List_of_datasets_for_machine_learning_research#Anomaly_data
https://en.wikipedia.org/wiki/List_of_datasets_for_machine_learning_research#Question_Answering_data

TYPES OF ML BENCHMARKS: PERFORMANCE

= Performance Benchmarks: measure the speed of network execution
» Frameworks and hardware are both measured

= Inference: throughput, latency

= Training: throughput, time to accuracy

Benchmark

Conv bench
DeepBench
DAWN Bench
Fathom
MLPerf

Breadth of
Types

1
Kernels
2
8
7

Accuracy
requireme
nt

No
No
Yes
No

Yes

Individual
Corporate
University
University

Industry

Submission
rules and

publication of
results

No
No
Minimal
No

Extensive

8/19/18 @

LIES, DAMN LIES,

COMMON BENCHMARK CHEATS

= Choosing thresholds that the comparison system cannot achieve
= Latency cutoff of 7Tms, comparison system has latency floor of 8 ms

= Cherry picking results
= Run the benchmark 20 times and publish the best result

= Normalize to a metric of advantage even if scalability doesn’t hold

= [f you don’t win on performance compare performance/W, performance/$,
performance/lb ...

CHEATS UNIQUE TC ML

= ML is statistical compute, results are subject to variation

= Do massive search to find fastest training on benchmark data
= Hyper-parameters: learning rate, batch size ...
= Fine grain verification to cherry pick first accuracy above threshold
= Initialization seeds

= Techniques just "game” for the benchmark data set and do not
generalize

8/19/18 @;’1

MISLERDING PRESENTATION

Training Inception with Distributed TensorFlow

>
o
U]
D
S
w
B
e
Q.
S
&
o
Log
. 1 2 4 8 16 50 100
Number of GPUs 1
. Gap 3x not
Linear 0%

Axis

Derek Murray, “Announcing TensorFlow 0.8 — now with distributed computing support!”, April 2016.

https://ai.googleblog.com/2016/04/announcing-tensorflow-08-now-with.html

64

32

16

Same data, no marketing

32

64

8/19/18 @

128

CONCLUSION: TODAY

= Scaling training is a matter of processor performance & communication latency

= Current accelerators:
= GEMM centric to overcome memory wall
= DNN frequently does not f{it
= Require large batch size to achieve high utilization/performance

= Scaling synchronous SGD requires large batch methods
= Accuracy may require extensive hyperparameter tuning
= Very large batch sizes only demonstrated on CNNs

= Minimize the impact of communication latency bottleneck
= Use asynchronous approaches, but those have all negatively impacted accuracy
= Hide communication latency by pipelining gradients

= Benchmarks emerging with some difficulty

8/19/18 @5-9

CONCLUSION: FUTURE ((Cereboras

< Massive multi-core engines that enable model parallelism

< Orders of magnitude greater memory and communication BW
< Unconstrained methods, e.g.,large and small mini-batch

< Capture weight and activation sparsity for higher performance

< Support research and execution of emergent model architectures
(not just those of today)

REFERENCES FOR NUMBERS (SLIDE 43)

2015/10: UC Berkeley: GoogleNet on 128 Nvidia K20’s; Gemini Interconnect;

» Jandola FN, Ashraf K, Moskewicz MW, Keutzer K. FireCaffe: near-linear acceleration of deep neural network training
on compute clusters. arXiv preprint arXiv:1511.00175. 2015 Oct 31. Also, In Proceedings of CVPR 2016, 2592-2060.

2016/02: Intel: VGG-A on 128 Intel Xeon ES5; Aries Dragonfly Interconnect

» Das D, Avancha S, Mudigere D, Vaidynathan K, Sridharan S, Kalamkar D, Kaul B, Dubey P. Distributed deep learning
using synchronous stochastic gradient descent. arXiv preprint arXiv:1602.06709. 2016 Feb 22.

2016/04: Google: Inception on 200 Nvidia K40’s; ? Interconnect

= Chen], Monga R, Bengio S, Jozefowicz R. Revisiting Distributed Synchronous SGD. arXiv preprint arXiv:1604.00981.
2016 Apr 4. Also, ICLR Workshop 2016.

» Dean, Jeff, Large-Scale Deep Learning With TensorFlow, presentation at ScaledML 2016, July 2016.

2016/11: Amazon: Resnet/Inception 3 on 128 K80’s: 56 GB Ethernet

* Mu Li, Alex Smola, MXNET,

2017/06: FaceBook: Resnet-50 on 256 P100s: NVLink, 1 hour

2017/10-12: Yang You ...
« You,Yang, Zhao Zhang, C. Hsieh, James Demmel, and Kurt Keutzer. "ImageNet training in minutes." Best Paper Award,
ICPP 2018. Also, arXiv preprint arXiv: 1709.05011 (2017).
2017/11: Preferred Networks
2018/07: Tencent
* Jia, Xianyan, et al. "Highly Scalable Deep Learning Training System with Mixed-Precision: Training ImageNet in Four Minutes." arXiv
preprint arXiv:1807.11205 (2018). Jia, Xianyan, et al. "Highly Scalable Deep Learning Training System with Mixed-Precision: Training
ImageNet in Four Minutes." arXiv preprint arXiv:1807.11205 (2018).
2018/08: Fast Al
= Jeremy Howard. "Now anyone can train Imagenet in 18 minutes." http://www.fast.ai/2018/08/10/fastai-diu-imagenet. 8/19/18 @

http://www.allthingsdistributed.com/2016/11/mxnet-default-framework-deep-learning-aws.html
https://arxiv.org/abs/1706.02677
https://www.preferred-networks.jp/en/news/pr20171110

CONCLUSION

Today

Scaling training is a matter of
= Achieving higher processor performance

= Minimizing communication latency

Current Accelerator Systems
= GEMM centric

= Often, the Deep Neural Network does not fit
= Increase peak performance processors

= Decrease memory traffic

= Increase Utilization by increasing batch size

The only way to scale Synchronous SGD is to
increasing batch sizes

= However retainin? accuracy may require
hyperparameter tuning

= Very large batch sizes only demonstrated on CNNs

Minimize the impact of communication latency

= Use asynchronous a&aproaches, but those have all
negatively impacted accuracy

= Hide communication latency by pipelining gradients

TO mo r IOW (Comments on the text below coming independently)

QA future machine can address:

» Large batch size requires hyper parameter tuning
< Scale the performance but still keep batch size small

> Vast fine-grained-parallelism with huge compute
< Scale fine grain parallelism

» Memory Wall

< Large memory BW at large capacity

> Distributed Interconnect Network Wall
< Take advantage of model parallelism

< Exploit nearby communication at low latency
< Sparse Communication

» Abundance of fine & coarse grain sparsity
< Capture the sparsity available in a fine grain fashion

OBenchmarks emerging with some difficulty

8/19/18

(63

TRAINING PARALLELISM OPPORTUNITIES

100000000

10000000

1000000

100000

10000

1000

100

10

1

Resnet50 on Imagenet parallelism

consumed

model

consumed

data

8/19/18 @1

HIDING COMMUNICATION LATENCIES

= Time-flow chart with maximized overlap

= Linear speedup

= All communications are hidden
behind the computation

= Gradient computation and parameter
update at the first fully-connected
layers are delayed to the next mini- mini-batch m

batch training =~ 0200000

mini-batch m+1

Time

Sunwoo Lee, Dipendra Jha, Ankit Agrawal, Alok Choudhary,
and Wei-keng Liao, “Parallel Deep Convolutional Neural
Network Training by Exploiting the Overlapping of Computation
and Communication “, IEEE 24th International Conference on
High Performance Computing, 2017.

| Comm. Comp.
FF (m)
Gather A
BP (m)
Reduce W0
Reduce W1 Update 0 (m)
| Gather E | Update 1 (m)
FF (m+1)

BP (m)

Update 2 (m)

8/19/18 @6-5

	Slide Number 1
	Accelerating Training�In THE CLOUD
	Slide Number 3
	Agenda	
	Basics of gradient descent training
	Backpropagation
	Hyperparameters & machinery
	Learning Rate
	Gradient surface
	SGD Optimizers
	Generalization and overfitting
	Architectural Attributes
	Data vs. Model Parallelism
	Stochastic Gradient Descent
	Batched Gradient Descent
	Pipelined Backpropagation
	What Do We Need to Support?
	Precision and sparsity
	Scales of values vary Widely
	We are missing The Range with FP16
	Sparsity Has Many Flavors	
	RNNs & CNNS Benefit from Structured Sparsity
	Scaling of Training
	Overcome Memory Wall WITH Memory Hierarchy
	Memory ACCESs is >500× Arithmetic Energy
	GEMM ACCELERATORS 10× more efficient
	VOLTa: GPU INFUSED with gEMM CORES
	TPU2: GeMM Systolic ARRAYS
	Activations Take Most of The Memory
	Storage is Quadratic Function of Network Depth
	Recompute WHAT YOU Can't Remember
	25% More ComputE Saves 80% memory
	SCALING THE SYSTEM
	Latency IS A Bottleneck
	Distributed SGD Exploits data Parallelism
	Roofline Model For Distributed Training
	Bulk Synchronous SGD
	We MUSt Increase The Batch size
	Overlap Communication and Compute �To Hide Network Latency
	Don't Decay the Learning Rate, Increase the Batch Size
	Layer-Wise Adaptive Learning Rate
	Recent Progress
	Pushing Synchronous SGD Farther
	Large Batches Miss THE Minimum
	LARGE BATCHs Miss Test Accuracy
	Scaling Training With LARGE BATCHEs
	Asynchronous SGD
	HOGWILD!
	Deep Gradient Compression
	Slide Number 50
	FUTURE OF Accelerated TRAINING
	Benchmarking ML
	Types of ML Benchmarks: Quality
	Types of ML Benchmarks: Performance
	Lies, Damn Lies, ….
	Common Benchmark cheats
	Cheats unique to ML
	Misleading presentation
	Conclusion: Today
	Conclusion: Future
	Slide Number 61
	References for Numbers (slide 43)
	Conclusion	
	Training parallelism opportunities
	Hiding Communication Latencies

