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RANGE OF APPLICATIONS

>> 3

Computer Vision
CNNs

Object Detection Semantic Segmentation Image Classification

Speech Recognition
RNNs, LSTMs

Speech
Recognition 

Speaker
Diarization

Others

Natural Language Processing
Sequence to sequence

Sentiment AnalysisTranslation

Recommender GamePlay



Fundamentals of training
Architecture features for training
Scaling of training
Benchmarking
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8/19/18 5Sebastian Ruder, “An overview of gradient descent optimization algorithms” arXiv:1609.04747 15 Jun 2017
https://arxiv.org/pdf/1609.04747.pdf



8/19/18 6Simon Knowls, “Graphcore Intelligent Processing Unit (IPU)” Deep Learning at Supercomputer Scale Workshop, NIPS-17.
https://www.matroid.com/scaledml/2018/simon.pdf

Loss
Function

Loss
Function



Machinery
Normalizers
Loss functions
Optimizers

Parameters into machinery
Learning rate
Momentum
Decay
Batch size
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8/19/18 8Sebastian Ruder, “An overview of gradient descent optimization algorithms” arXiv:1609.04747 15 Jun 2017
https://arxiv.org/pdf/1609.04747.pdf



Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, Tom Goldstein,
“VISUALIZING THE LOSS LANDSCAPE OF NEURAL NETS” arXiv:1712.09913v2 [cs.LG] 5 Mar 2018
https://www.cs.umd.edu/~tomg/projects/landscapes/
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8/19/18 10Sebastian Ruder, “An overview of gradient descent optimization algorithms” arXiv:1609.04747 15 Jun 2017
https://arxiv.org/pdf/1609.04747.pdf



http://scikit-learn.org/stable/auto_examples/model_selection/plot_underfitting_overfitting.html
8/19/18 11



Parallelism

Precision, Quantization

Sparsity

Parallelism
Data parallelism
Coarse grain
Mini-batch size
 Amortizing the cost of 

communication latency
 Fine grain
 SIMD

Model parallelism
Granularity of network chunks

8/19/18 12



http://chainermn.readthedocs.io/en/v1.0.0b2_a/tutorial/overview.html
© Copyright 2017 Preferred Networks, inc.. Revision 2a654771.
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Data Parallel
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GEMV 
 Inherently inefficient
 Requirements
 Broadcast (systolic /non-systolic)
 Reduction 

14Yuanfang Li, Ardavan Pedram,“CATERPILLAR: Coarse Grain Reconfigurable Architecture for Accelerating the Training of Deep Neural Networks,”
IEEE-ASAP2017. https://arxiv.org/abs/1706.00517
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Data parallelism
GEMV➔ GEMM
GEMM: Memory efficient kernel
 # of weight updates / batch size

15Yuanfang Li, Ardavan Pedram,“CATERPILLAR: Coarse Grain Reconfigurable Architecture for Accelerating the Training of Deep Neural Networks,”
IEEE-ASAP2017. https://arxiv.org/abs/1706.00517
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Pipeline parallelization
 Pipelining inputs
 Layer locality
More efficient GEMVs
 Smaller reduction tree

Weight temporal locality
 Update and consume immediately

16Yuanfang Li, Ardavan Pedram,“CATERPILLAR: Coarse Grain Reconfigurable Architecture for Accelerating the Training of Deep Neural Networks,”
The 28th IEEE International Conference on Application-specific Systems, Architectures and Processors (ASAP2017). 
https://arxiv.org/abs/1706.00517



GEMM: General Matrix Matrix multiplication

GEMV: General Matrix Vector multiplication 

Collective communications
Gather
Reduce
All gather
All reduce
Broadcast
All-to-All

8/19/18 17



Precision for FPUs

Distribution of scales
Loss scaling

Sparsity 
Activation sparsity
Weight sparsity

8/19/18 18



8/19/18 19
Urs Köster, Tristan J. Webb, Xin Wang, Marcel Nassar, Arjun K. Bansal,William H. Constable, Oğuz H. Elibol, Scott Gray, Stewart 
Hall, Luke Hornof, Amir Khosrowshahi, Carey Kloss, Ruby J. Pai, Naveen Rao, “Flexpoint: An Adaptive Numerical Format for Efficient 
Training of Deep Neural Networks” Neural Information Processing Systems (NIPS) 2017. https://arxiv.org/abs/1711.02213



8/19/18 20Paulius Micikevicius, Sharan Narang, Jonah Alben, Gregory Diamos, Erich Elsen, David Garcia, Boris Ginsburg, Michael Houston,
Oleksii Kuchaiev, Ganesh Venkatesh, Hao Wu, “Mixed Precision Training”, ICLR 2018. https://arxiv.org/abs/1710.03740



 Activation Sparsity
 RELU / MAXPOOL (on back propagation)

 Weight Sparsity
 Fine grain
 Per row
 Per column
 Per kernel
 Per channel 
 Per filter
 Block sparsity

Huizi Mao, Song Han, Jeff Pool,Wenshuo Li, Xingyu Liu,Yu Wang,William J. Dally,“ Exploring the Granularity of Sparsity in 
Convolutional Neural Networks” CVPR’17 TMCV workshop. https://arxiv.org/abs/1705.08922
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RNNs [1]
 90% sparsity reduces relative accuracy by 10% to 20%
 Solution: Make the sparse model larger
 Large sparse model still have less parameters compared to the small 

dense baseline and achieves a slight increase in accuracy 

CNNs [2]
 Pruning with large granularity will greatly hurt accuracy
Due to index savings, coarse-grain pruning can still achieve space 

savings even at a lower overall sparsity 

8/19/18 22

[1]- Sharan Narang, Erich Elsen, Gregory Diamos, Shubho Sengupta, “Exploring Sparsity In Recurrent Neural Network”, ICLR 2017. 
https://arxiv.org/abs/1704.05119
[2]- Huizi Mao, Song Han, Jeff Pool,Wenshuo Li, Xingyu Liu,Yu Wang,William J. Dally,“ Exploring the Granularity of Sparsity in Convolutional 
Neural Networks” CVPR’17 TMCV workshop. https://arxiv.org/abs/1705.08922



Scaling the problem: Same system, bigger network
Memory bottleneck
Cost of computation vs. communication

Scaling the system: Bigger system
Synchronization bottleneck
Data communication on the cloud
Cloud scale synchronized SGD
Asynchronous SGD

8/19/18 23



µProc 1.52/yr.
(2X/1.5yr)

Processor-Memory
Performance Gap:
(grows 50% / year)

DRAM
7%/yr.
(2X/10 yrs)

“Moore’s Law”

Processor-DRAM Memory Gap
µProc 1.20/yr.

• 1980: no cache in micro-processor; 2010: 3-level cache on chip, 4-level cache off chip
• 1989 the first Intel processor with on-chip L1 cache was Intel 486, 8KB size
• 1995 the first Intel processor with on-chip L2 cache was Intel Pentium Pro, 256KB size
• 2003 the first Intel processor with on-chip L3 cache was Intel Itanium 2, 6MB size

John Hennessy, David Patterson, “Computer Architecture A Quantitative Approach”, Morgan Kaufman. ISBN-13: 978-8178672663
8/19/18 24



Operation 16 bit (integer) 64 bit (DP-FP)

E/op PJ vs. Add E/op PJ vs. Add

ADD 0.18 1.0 × 5 1.0 ×

Multiply 0.62 3.4 × 20 4.0 ×

16-Word Register File 0.12 0.7 × 0.34 0.07 ×

64-Word Register File 0.23 1.3 × 0.42 0.08 ×

4 K-word SRAM 8 44 × 26 5.2 ×

32 K-word SRAM 11 61 × 47 9.4 ×

DRAM 640 3556× 2560 512 ×

8/19/18 25
Ardavan Pedram, Stephen Richardson, Sameh Galal, Shahar Kvatinsky, and Mark A. Horowitz, “Dark Memory and Accelerator-Rich System 
Optimization in the Dark Silicon Era,” IEEE Design and Test Magazine Special Issue on Dark Silicon, April 2017.
https://arxiv.org/pdf/1602.04183.pdf
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GFLOPS W/mm2 GFLOPS/mm2 GFLOPS/W Utilization

Cell BE (SP) 200 0.3 1.5 5 88%

NVidia GTX480 SM (SP) 780 0.2 0.9 5.2 70%

NVidia GTX480 SM (DP) 390 0.2 0.4 2.6 70%

Intel Core-i7 960 (SP) 96 0.4 0.5 1.2 95%
Intel Core-i7 960 (DP) 48 0.4 0.25 0.6 95%
Altera Stratix IV (DP) 100 0.02 0.05 3.5 90+%
ClearSpeed CSX700 (DP) 75 0.02 0.2 12.5 78%
Linear Algebra Processor (SP) 1200 0.2 6-11 55 90+%
Linear Algebra Processor (DP) 600 0.2 3-5 25 90+%

Ardavan Pedram, Robert van de Geijn , Andreas Gerstlauer “Codesign Tradeoffs for High-Performance Low-Power Linear Algebra Architectures,” 
IEEE Transactions on Computers, Special Issue On Energy Efficient Computing, August 2012.

45nm scaled power / performance @ 1.4GHz for equivalent throughput



8/19/18 27https://www.servethehome.com/nvidia-v100-volta-update-hot-chips-2017/



8/19/18
https://www.matroid.com/scaledml/2018/jeff.pdf

28



8/19/18 29Minsoo Rhu, Natalia Gimelshein, Jason Clemons, Arslan Zulfiqar, Stephen W. Keckler, “vDNN: Virtualized Deep Neural Networks for 
Scalable, Memory-Efficient Neural Network Design” IEEE MICRO-49, 2016. https://arxiv.org/pdf/1602.08124.pdf



8/19/18
Hongyu Zhu, “How to Train a Very Large and Deep Model on One GPU?”, April 2017.
https://medium.com/syncedreview/how-to-train-a-very-large-and-deep-model-on-one-gpu-7b7edfe2d072

30



8/19/18 31Simon Knowls, “Graphcore Intelligent Processing Unit (IPU)” Deep Learning at Supercomputer Scale Workshop, NIPS-17.
https://www.matroid.com/scaledml/2018/simon.pdf

Recursive Checkpointing

Recompute the Activations 
from sparse snapshots

Trade most storage for one 
repeat of forwards pass 
compute



8/19/18 32Simon Knowls, “Graphcore Intelligent Processing Unit (IPU)” Deep Learning at Supercomputer Scale Workshop, NIPS-17.
https://www.matroid.com/scaledml/2018/simon.pdf

Dense Net 201



8/19/18 33Mark Harris, “NVIDIA DGX-1: The Fastest Deep Learning 
System”, April 2017.



8/19/18 34A3CUBE: “Latency Matters”, © A3CUBE INC
http://www.a3cube-inc.com/-latency-matters.html
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646464 6464 64

1 2 9 10 15 16

 Entire model on each processor

 Distribute the SGD batch evenly 
across each processor 
(aka per-processor batch): 

 1024 batch distributed over 
16 PEs 
 Batch of 64/PE 

 Communicate gradient updates 
all-to-all

1024 1024/16

35
(Data center picture from)
Mohammad Al-Fares, Alexander Loukissas, Amin Vahdat, 
“A scalable, commodity data center network architecture” ACM 
SIGCOMM 2008 conference on Data communication.
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Interconnect network BW
DRAM BWUse accelerators

Node locality
Exploit sparsity
Less comm / synch

36Samuel Williams, Andrew Waterman, and David Patterson, “Roofline: An Insightful Visual Performance Model for Floating-Point 
Programs and Multicore Architectures”. Communications of the ACM April 2008. 
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646464 6464 64

1 2 9 10 15 16

INTERCONNECT NETWORK

All-to-All
Barrier Synchronization

• Synchronization bottleneck
• Various approach to ameliorate this but the problem is inherent

1024

37Rogers, R. O., and David B. Skillicorn. "Using the BSP cost model to optimise parallel neural network 
training." International Parallel Processing Symposium. Springer Berlin Heidelberg, 1998.
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646464 64

1 2 N-1 N

INTERCONNECT NETWORK

All-to-All
Barrier Synchronization

• If we want to keep scaling synchronous SGD then we have to keep 
increasing the batch size

• N=256 -> Batch Size=16K

N×64

38



Breakdown for VGG

Minibatch 256

8/19/18 39

Sunwoo Lee, Dipendra Jha, Ankit Agrawal, Alok Choudhary, 
and Wei-keng Liao, “Parallel Deep Convolutional Neural 
Network Training by Exploiting the Overlapping of Computation 
and Communication “, IEEE 24th International Conference on 
High Performance Computing, 2017. 

Das, Dipankar, Sasikanth Avancha, Dheevatsa Mudigere, 
Karthikeyan Vaidynathan, Srinivas Sridharan, Dhiraj Kalamkar, 
Bharat Kaul, and Pradeep Dubey. "Distributed deep learning 
using synchronous stochastic gradient descent." arXiv preprint 
arXiv:1602.06709 (2016).



The key difficulty
Numerical optimization 

 Decrease # of parameter 
updates

Batch Size vs. learning rate

CIFAR-10 & Imagenet

Not general enough

8/19/18 40Samuel L. Smith, Pieter-Jan Kindermans, Chris Ying, Quoc V. Le,” Don't Decay the Learning Rate, Increase the Batch Size,” ICLR 2018.
https://arxiv.org/abs/1711.00489
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• LARS:
• Adapts the learning rate for 

each layer

• Scaling to 
B=8K for Alexnet
B=32K for Resnet-50. 

Above 32K without accuracy 
loss is still open problem

41

• You, Yang, Igor Gitman, and Boris Ginsburg. "Scaling SGD Batch Size to 32K for ImageNet Training." arXiv preprint arXiv:1708.03888 (2017).
• You, Yang, Zhao Zhang, C. Hsieh, James Demmel, and Kurt Keutzer. "ImageNet training in minutes." ICPP 2018. 

https://arxiv.org/abs/1709.05011
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Training a DNN  (ResNet50) on ImageNet requires
720 hours on a SINGLE Maxwell Titan X
Now just 8.7 minutes

5000 x
speedup

42
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32

128

256

10/15 4/16 11/16 06/17

UCB 
FireCaffe
GoogLeNet
(53MB)
128 K20
Cray 
Gemini
Batch: 1024
10.5 hours

Google
Inception V3
200 K40
Sync SGD @ 
200
??? 
Interconnect
22.94 hours

Amazon [1]
Inception v3
(95 MB)
128 K80
Sync SGD
25Gb/s 
Interconnect
6.57 hours

Facebook
ResNet-50
256 P100
Sync SGD
NVLink
Batch: 8k
1 hour

>512

SurfSara
ResNet-50
768 KNLs
Sync SGD
Batch: 12K
40 mins

09/17

UC Berkeley
Yang You
AlexNet
1024 CPUs
B=32K
11 mins
ResNet50
1600 CPU
B=16K
31 minutes

11/17

Preferred
Networks
256 GPU
B=32K
ResNet50
15 mins

11/17 8/18

Fast.AI
Resnet
16x8 V100
AWS
B=dynamic 
18 mins
ResNet50

43

Tencent
1024 GPU
B=64K
ResNet50
8.7 mins

7/18



8/19/18 44Dominic Masters, Carlo Luschi, “Revisiting Small Batch Training for Deep Neural Networks” arXiv:1804.07612 2017.
https://www.graphcore.ai/posts/revisiting-small-batch-training-for-deep-neural-networks



8/19/18 45Dominic Masters, Carlo Luschi, “Revisiting Small Batch Training for Deep Neural Networks” arXiv:1804.07612 2017.
https://arxiv.org/abs/1804.07612



Cons
Constrained approach: Need 

to employ large batches to 
capture efficiency

May not achieve target 
accuracy

Only demonstrated on CNNs

More prone to adversarial 
attacks[1]                                                                      

Pros
Robust: Relatively less 

hyperparameter tuning

Sequential consistency 

Good infrastructural support 
from HPC frameworks (MPI)

Fault tolerance is practically 
handled by snapshots and 
rollback otherwise

8/19/18 46
[1] Zhewei Yao, Amir Gholami, Qi Lei , Kurt Keutzer, Michael  Mahoney,
“Hessian-based Analysis of Large Batch Training and Robustness to Adversaries”, arXiv:1802.08241v. 
https://arxiv.org/pdf/1802.08241.pdf



Hogwild![1]
 Asynchronous on shared memory 

Distributed asynchronous SGD
 Googles training (Dist belief)[2]
 Accuracy has degraded at large scaling >32  [3,4]

Deep gradient compression[5] 

8/19/18 47

[1]- Feng Niu, Benjamin Recht, Christopher R´e and Stephen J. Wright, “Hogwild!: A Lock-Free Approach to Parallelizing Stochastic 
Gradient Descent”,  NIPS 2011. https://people.eecs.berkeley.edu/~brecht/papers/hogwildTR.pdf

[2] - Jeffrey Dean, Greg S. Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Quoc V. Le, Mark Z. Mao, Marc’Aurelio Ranzato, Andrew Senior, 
Paul Tucker, Ke Yang, Andrew Y. Ng , “Large Scale Distributed Deep Networks”. https://ai.google/research/pubs/pub40565

[3]- Zhang, Sixin, Anna E. Choromanska, and Yann LeCun. "Deep learning with elastic averaging SGD." In Advances in Neural Information 
Processing Systems, pp. 685-693. 2015.

[4]- Jin, Peter H., Qiaochu Yuan, Forrest Iandola, and Kurt Keutzer. "How to scale distributed deep learning?." arXiv preprint 
arXiv:1611.04581 (2016). NIPS MLSys 2017.

[5]- Yujun Lin, Song Han, Huizi Mao,Yu Wang,William J. Dally, “Deep Gradient Compression: Reducing the Communication Bandwidth for 
Distributed Training” ICLR 2018. https://arxiv.org/abs/1712.01887



8/19/18 48Feng Niu, Benjamin Recht, Christopher R´e and Stephen J. Wright, “Hogwild!: A Lock-Free Approach to Parallelizing Stochastic Gradient 
Descent”,  NIPS 2011. https://people.eecs.berkeley.edu/~brecht/papers/hogwildTR.pdf



8/19/18 49Yujun Lin, Song Han, Huizi Mao,Yu Wang,William J. Dally, “Deep Gradient Compression: Reducing the Communication Bandwidth 
for Distributed Training” ICLR 2018. https://arxiv.org/abs/1712.01887



Radial Engine

Propeller engine
Lower flying range
Less aerodynamic
Distributed performance
Central shaft 

synchronization
Too many moving parts

8/19/18 50

Turbo Fan Jet Engine

“If we all worked on the assumption that 
what is accepted as true is really true, 
there would be little hope of advance.”                         Orville Wright

1. https://imgur.com/gallery/79Qo0/comment/12698133
2. By RichardWheeler from wikipedia

https://imgur.com/gallery/79Qo0/comment/12698133
http://www.richardwheeler.net/


 Increase physical scale to support model parallelism

Architectures to improve communication and memory bandwidth

Dedicated silicon area to neural network compute

Exploit sparsity

Keep an eye out for companies that will contribute to cloud training

8/19/18 51
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 Quality Benchmarks: measure the accuracy of networks
 ImageNet: Fei-Fei Li 2012, 1.2M image standard dataset for measuring classification accuracy as well as a yearly 

competition
 Revolutionized image classification

 Mnist: hand written digit dataset
 CIFAR: small image classification
 Many more: 

https://en.wikipedia.org/wiki/List_of_datasets_for_machine_learning_research#Object_detection_and_recognition

 Image data
 Text data 
 Sound data
 Signal data
 Physical data
 Biological data
 Anomaly data
 Question Answering data
 Multivariate data 8/19/18 53

https://en.wikipedia.org/wiki/List_of_datasets_for_machine_learning_research#Image_data
https://en.wikipedia.org/wiki/List_of_datasets_for_machine_learning_research#Text_data
https://en.wikipedia.org/wiki/List_of_datasets_for_machine_learning_research#Sound_data
https://en.wikipedia.org/wiki/List_of_datasets_for_machine_learning_research#Signal_data
https://en.wikipedia.org/wiki/List_of_datasets_for_machine_learning_research#Physical_data
https://en.wikipedia.org/wiki/List_of_datasets_for_machine_learning_research#Biological_data
https://en.wikipedia.org/wiki/List_of_datasets_for_machine_learning_research#Anomaly_data
https://en.wikipedia.org/wiki/List_of_datasets_for_machine_learning_research#Question_Answering_data


Performance Benchmarks: measure the speed of network execution
 Frameworks and hardware are both measured
 Inference: throughput, latency
 Training: throughput, time to accuracy

8/19/18

Benchmark Breadth of 
Types

Accuracy
requireme
nt

Support Submission
rules and 
publication of 
results

Conv bench 1 No Individual No

DeepBench Kernels No Corporate No

DAWN Bench 2 Yes University Minimal

Fathom 8 No University No

MLPerf 7 Yes Industry Extensive 54
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Choosing thresholds that the comparison system cannot achieve
 Latency cutoff of 7ms, comparison system has latency floor of 8 ms

Cherry picking results
 Run the benchmark 20 times and publish the best result

Normalize to a metric of advantage even if scalability doesn’t hold
 If you don’t win on performance compare performance/W, performance/$, 

performance/lb …

8/19/18 56



ML is statistical compute, results are subject to variation

Do massive search to find fastest training on benchmark data
Hyper-parameters: learning rate, batch size …
 Fine grain verification to cherry pick first accuracy above threshold
 Initialization seeds

Techniques just ”game” for the benchmark data set and do not 
generalize

8/19/18 57



Gap 3x not 
2x

Log Axis

Linear 
Axis

1

2

4

8

16

32

64

1 2 4 8 16 32 64 128

Same data, no marketing

Derek Murray, “Announcing TensorFlow 0.8 – now with distributed computing support!”, April 2016. 
https://ai.googleblog.com/2016/04/announcing-tensorflow-08-now-with.html
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TODAY
 Scaling training is a matter of processor performance & communication latency

Current accelerators:
 GEMM centric to overcome memory wall
 DNN frequently does not fit 
 Require large batch size to achieve high utilization/performance

 Scaling synchronous SGD requires large batch methods
 Accuracy may require extensive hyperparameter tuning
 Very large batch sizes only demonstrated on CNNs

Minimize the impact of communication latency bottleneck
 Use asynchronous approaches, but those have all negatively impacted accuracy
 Hide communication latency by pipelining gradients

 Benchmarks emerging with some difficulty
8/19/18 59



FUTURE

Massive multi-core engines that enable model parallelism

 Orders of magnitude greater memory and communication BW

 Unconstrained methods, e.g., large and small mini-batch

 Capture weight and activation sparsity for higher performance

 Support research and execution of emergent model architectures 
(not just those of today)

8/19/18 60
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2015/10: UC Berkeley: GoogleNet on 128 Nvidia K20’s; Gemini Interconnect; 
 Iandola FN, Ashraf K, Moskewicz MW, Keutzer K. FireCaffe: near-linear acceleration of deep neural network training 

on compute clusters. arXiv preprint arXiv:1511.00175. 2015 Oct 31. Also, In Proceedings of CVPR 2016, 2592-2060. 
2016/02: Intel: VGG-A on 128 Intel Xeon E5; Aries Dragonfly Interconnect
 Das D, Avancha S, Mudigere D, Vaidynathan K, Sridharan S, Kalamkar D, Kaul B, Dubey P. Distributed deep learning 

using synchronous stochastic gradient descent. arXiv preprint arXiv:1602.06709. 2016 Feb 22.
2016/04: Google: Inception on 200 Nvidia K40’s; ? Interconnect
 Chen J, Monga R, Bengio S, Jozefowicz R. Revisiting Distributed Synchronous SGD. arXiv preprint arXiv:1604.00981. 

2016 Apr 4. Also, ICLR Workshop 2016. 
 Dean, Jeff, Large-Scale Deep Learning With TensorFlow, presentation at  ScaledML 2016, July 2016. 
2016/11: Amazon: Resnet/Inception 3 on 128 K80’s: 56GB Ethernet
 Mu Li, Alex Smola, MXNET, 
 http://www.allthingsdistributed.com/2016/11/mxnet-default-framework-deep-learning-aws.html
2017/06: FaceBook: Resnet-50 on 256 P100s: NVLink, 1 hour
 https://arxiv.org/abs/1706.02677
2017/10-12: Yang You …
• You, Yang, Zhao Zhang, C. Hsieh, James Demmel, and Kurt Keutzer. "ImageNet training in minutes." Best Paper Award, 

ICPP 2018. Also, arXiv preprint arXiv: 1709.05011 (2017). 
2017/11: Preferred Networks
 https://www.preferred-networks.jp/en/news/pr20171110
2018/07: Tencent
 Jia, Xianyan, et al. "Highly Scalable Deep Learning Training System with Mixed-Precision: Training ImageNet in Four Minutes." arXiv

preprint arXiv:1807.11205 (2018). Jia, Xianyan, et al. "Highly Scalable Deep Learning Training System with Mixed-Precision: Training 
ImageNet in Four Minutes." arXiv preprint arXiv:1807.11205 (2018).

2018/08: Fast AI
 Jeremy Howard. "Now anyone can train Imagenet in 18 minutes." http://www.fast.ai/2018/08/10/fastai-diu-imagenet.

http://www.allthingsdistributed.com/2016/11/mxnet-default-framework-deep-learning-aws.html
https://arxiv.org/abs/1706.02677
https://www.preferred-networks.jp/en/news/pr20171110


Today

A future machine can address:
 Large batch size requires hyper parameter tuning

 Scale the performance but still keep batch size small  

 Vast fine-grained-parallelism with huge compute
 Scale fine grain parallelism 

Memory Wall
 Large memory BW at large capacity

 Distributed Interconnect Network Wall
 Take advantage of model parallelism
 Exploit nearby communication at low latency
 Sparse Communication

 Abundance of fine & coarse grain sparsity
 Capture the sparsity available in a fine grain fashion

Benchmarks emerging with some difficulty

Tomorrow (Comments on the text below coming independently)

 Scaling training is a matter of
 Achieving higher processor performance
 Minimizing communication latency

 Current Accelerator Systems
 GEMM centric 
 Often, the Deep Neural Network does not fit 
 Increase peak performance processors
 Decrease memory traffic
 Increase Utilization by increasing batch size

 The only way to scale Synchronous SGD is to 
increasing batch sizes
 However retaining accuracy may require 

hyperparameter tuning
 Very large batch sizes only demonstrated on CNNs

 Minimize the impact of communication latency 
 Use asynchronous approaches, but those have all 

negatively impacted accuracy
 Hide communication latency by pipelining gradients

8/19/18 63
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model data

Resnet50 on Imagenet parallelism
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 Time-flow chart with maximized overlap

 Linear speedup
 All communications are hidden 

behind the computation

Gradient computation and parameter 
update at the first fully-connected 
layers are delayed to the next mini-
batch training

8/19/18 65

Sunwoo Lee, Dipendra Jha, Ankit Agrawal, Alok Choudhary, 
and Wei-keng Liao, “Parallel Deep Convolutional Neural 
Network Training by Exploiting the Overlapping of Computation 
and Communication “, IEEE 24th International Conference on 
High Performance Computing, 2017. 
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