
Architectures for Accelerating Deep Neural Networks

˃ Part 1: Overview of Deep Learning and Computer Architectures for Accelerating DNNs
Michaela Blott, Principal Engineer, Xilinx Research

˃ Part 2: Accelerating Inference at the Edge
Song Han, Assistant Professor, MIT

˃ Part 3: Accelerating Training in the Cloud
William L. Lynch, VP Engineering and Ardavan Pedram, MTS, Cerebras

>> 1

Michaela Blott

Principal Engineer

August 2018

Overview of Deep

Learning and Computer

Architectures for Accelerating

DNNs

>> 2

The Rise of The Machine (Learning Algorithms)

˃ Potential to solve the unsolved problems

Making solar energy economical, reverse engineering the brain (Jeff Dean, Google Brain 2017)

˃ Many difficult ethical questions

Will machines destroy jobs? AI apocalypse?

˃ History has shown: We are going through cycles of inventions followed by society adjustments

All of this has happened before and will happen again (Battlestar Galactica, 2014)

˃ Let’s look at what the technology can do, and how we computer architects can enable it further

1. 2. 3. 4.
1800 1900 2000

Mechanical
Steam powered

mechanical
production

Electrical
Mass production

with electrical
energy

Digital
Automated
production

Virtual
Machine Learning
Industrial Internet

>> 3

Neural Networks

>> 4

A.I. – Machine Learning - Neural Networks

Artificial Intelligence (A.I.)

Computer Vision Pattern Recognition Machine Learning Cognitive Robotics . . .

Linear Regression K-Means Clustering Decision TreesNeural Networks . . .

“machine mimics cognitive
functions such as learning and

problem solving”

“Predominantly used ML algorithm
Mimics the human brain”

“Gives computers the ability to
learn without being explicitly

programmed”

>> 5

Convolutional Neural Networks (CNNs)
from a computational point of view

˃ CNNs are usually feed forward* computational

graphs constructed from one or more layers

Up to 1000s of layers

˃ Each layer consists of neurons ni which are

interconnected with synapses, associated with

weights wij

˃ Each neuron computes:

Typically linear transform (dot-product of receptive field)

Followed by a non-linear “activation” function
Layer

L0
Layer

L1
Layer

L2

Weights
W2

Weights
W1

Weights
W0

Inputs Outputs

i0

i1

w00

w12

n0

n1

n2

n0 = Act(w00*i0 + w10*i1)

Synapse with weight wji

Neuron ni

>> 6
* With exception of RNNs

Evolution: From Shallow to Deep Learning

Handcrafted
Feature

Extraction

Layer
Ln-1

Weights
Wn-1

Inputs Outputs

extract features
& encode in a vector

Feed into classifier
(Support Vector Machine or similar)

“Shallow
Learning”

Layer
L0

Layer
L1

Layer
Ln-1

Weights
Wn-1

Weights
W1

Weights
W0

Inputs Outputs
Layer

L1

Weights
W1

Learn low level to high level features
(pixel, edges, textons, parts, objects)

“Deep
Learning”

Image: Simon Thorpe

“Hierarchical learning”

“CAT”

>> 7
Freely adapted from Yann LeCun and Kurt Keutzer

Convolutional Neural Networks (CNNs)
Why are they so popular?

˃ Requires little or no domain expertise

˃ NNs are a “universal approximation function”

˃ If you make it big enough and train it enough

Can outperform humans on specific tasks

˃ Will increasingly replace other

algorithms

unless for example simple rules can
describe the problem

˃ Solve problems previously

unsolved by computers

˃ And solve completely unsolved

problems

>> 8

Increasing Range of Applications

>> 9

Computer Vision
CNNs

Object Detection Semantic Segmentation Image Classification

Sedan:	0.98
Motorcycle:	0.005
Truck:	0.005
…

Sedan Sedan

Road

(a)	Image	classification (b)	Object	detection (c)	Semantic	segmentation

Speech Recognition
RNNs, LSTMs

Speech
Recognition

Speaker
Diarization

Others

Natural Language Processing
Sequence to sequence

Sentiment AnalysisTranslation

Recommender
>> 9

GamePlay

Many more emerging…

Popular Neural Networks

>> 10

Computer Vision
CNNs

Object Detection Semantic Segmentation Image Classification

Sedan:	0.98
Motorcycle:	0.005
Truck:	0.005
…

Sedan Sedan

Road

(a)	Image	classification (b)	Object	detection (c)	Semantic	segmentation

Speech Recognition
RNNs, LSTMs

Speech
Recognition

Speaker
Diarization

Others

Natural Language Processing
Sequence to sequence

Sentiment AnalysisTranslation

Recommender
>> 10

GamePlay

ResNet50, VGG,
AlexNet, InceptionV3 Faster R-CNN,

Yolo9000, YoloV2
Mask-R-CNN,

SSD

DeepSpeech2

Seq2Seq,
Transformer

Seq-CNN

NCF
MiniGo,

DeepQ, A3C

Adopted from MLPerf, Fathom, TDP

Training

Process for a machine to learn by

optimizing models (weights) from labeled

data.

Typically computed in the cloud (part 3)

Inference

Using trained models to predict or

estimate outcomes from new inputs.

Deployment at the edge (part 2)

From Training to Inference

“dog”
“dog”

“dog”
“dog”

“dog”

Training
dataset labels

“dog”

Trained weights
(model)

>> 11

Cat?

Input Image

Example: ResNet50
Forward Pass (Inference)

(initialized)
Neural Network Neural Network

For ResNet50:
70 Layers
7.7 Billion operations
25.5 MBytes of weight storage*
10.1 MBytes for activations*

*Assuming int8

WeightsWeightsWeights

>> 12

Input Image

Example: ResNet50
Backpropagation – 1 Image

Neural Network Result Label

Dog!!!

errorWeight
Updates
error

Weight
Updateserror

Weight
Updates

For ResNet50:
23 Billion operations
weights, weight gradients, updates: 303MBytes of storage (3-5x)
activations, gradients: 80 MBytes

*Assuming 32b SP

WeightsWeightsWeights

Cat?

>> 13

Input Image

Example: ResNet50
Training – 1.2 Million Images for 1 epoch

Neural Network Result Label

Weight
Updates

Weight
Updates

Weight
Updates

For ResNet50: 1 epoch takes 1.2M * 23 Billion operations = 23 * 1015 operations (peta)

WeightsWeightsWeights

Dog!!!Cat?

>> 14

Example: ResNet50
Training – Approximately 100 Epochs

For ResNet50: 100 * 23 1015 = 2.3 * 1018 (exa)
Single P40 GPU (12TFLOPS): 11days @ 100%, usually ~2 weeks

>> 15

ResNet50:
• For inference: Billions of operations, and 10s of MegaBytes
• For training: Quintillions/Exa of operations, and 100s of MegaBytes

Inference and Training
Nested Loops

For all epochs do:

For all images in data set do:

compute in batches of input images

inference

For i = 1 to max_layers do:

input(i+1) = act(input(i),weights);

determine error;

calculate gradients;

backpropagate with SGD

For i = 1 to max_layers do:

weight_grad = f(inputs(i), actgrad(i+1);

weight_update += g(weight_grad);

act_grad(i) = f(weights(i), actgrad(i+1);

at end of batch

weights := f(weights, weight_updates, learning rates);

>> 16

Group of inputs buffered to increase compute
efficiency

Dictates intervals between weight
updates to reduce communication
overhead, at potentially adverse effect
on accuracy

How do we loop transform and unfold this best to maximize
data reuse and compute efficiency?

Massively nested for loops in
themselves

NNs in More Detail

Layer
L0

Layer
L1

Layer
L2

Weights
W2

Weights
W1

Weights
W0

Inputs Outputs

Weights
W5

Weights
W4

Weights
W3

Weights
W6

Layer
L2

Layer
L1

Layer
L2

Layer
L2

feature extraction classification

>> 17

Fully Connected Layers

Convolutional Layers (CNV)

Pooling Layers (POOL)

Recurrent Layers (RL)

Activation & Batch Normalization

Activation Functions

˃ Implements the concept of “Firing”

Non-linear so we can approximate more complex functions

˃ Most popular for CNN: rectified linear unit (ReLU)**

Popular as it propagates gradients better than bounded and easy
to compute

However, recent work says as long as you have the proper
initialization, it'll be fine even with bounded act. function*

˃ Other common ones include: tanh, leaky ReLU, sigmoid,

threshold functions for quantized neural networks

˃ Implementation:

Support for special functions as well as some level of flexibility

>> 18

*Xiao, L., Bahri, Y., Sohl-Dickstein, J., Schoenholz, S.S. and Pennington "Dynamical Isometry and a Mean Field Theory of CNNs: How to Train 10,000-
Layer Vanilla Convolutional Neural Networks." arXiv preprint arXiv:1806.05393 (2018).
**Nair, V. and Hinton, G.E., 2010. Rectified linear units improve restricted boltzmann machines. In Proceedings of the 27th international
conference on machine learning (ICML-10) (pp. 807-814).

Batch Normalization

˃ Normalizes the statistics of activation values

across layers

˃ Significantly reduces the training time of

networks, can improve accuracy and makes

it less sensitive to initialization

˃ Compute:

Lightweight at inference

Heavy duty during training

‒ Subtract mean, divide by standard deviation to
achieve zero-centered distribution with unit
variance

>> 19

https://en.wikipedia.org/wiki/Normal_distribution

Ioffe, S. and Szegedy, C., 2015. Batch normalization:
Accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167.

Fully Connected Layers
(aka inner product or dense layers)

˃ Each input activation is connected to every output activation

Receptive field encompasses the full input

˃ Can be written as a matrix-vector product with an element-

wise non-linearity applied afterwards.

˃ Implementation Challenges

Connectivity

High weight memory requirement: #IN * #OUT * BITS

Low arithmetic intensity assuming weights off-chip

2 * #IN* #OUT / #IN * #OUT * BITS/8

i0

i1

i2

w00

w23

n0

n1

n2

n3

W00 W01 W02 W03
W10 W11 W12 W13
W20 W21 W22 W23

i0 i1 i2 x = n0’ n1’ n2’ n3’

(n0 n1 n2 n3) = Act(n0’ n1’ n2’ n3’)

>> 20
IN: number of input channels
OUT: number of output channels
BITS: bit precision in data types

MODEL CONV WEIGHTS (M) FC WEIGHTS (M)

ResNet50 23.454912 2.048
AlexNet 2.332704 58.621952

VGG16 14.710464 123.633664

Convolutional Layers
Example 2D Convolution

˃ Convolutions capture some kind of locality, spatial or temporal, that we know exists in

the domain

˃ Receptive field of each neuron reduced

Applying convolution to all images in the previous layer

˃ Weights represent the filters used for convolutions

w00 w01

w10 w11

filter

i00 i01

i10 i11

input

i02

i12

i20 i21 i22

* =

output

n00 n01

n10 n11

w00 w01

w10 w11

n00 = Act(w00*i00 + w01*i01+w10*i10 + w11*i11 +
w00*i00 + w01*i01+w10*i10 + w11*i11 +
w00*i00 + w01*i01+w10*i10 + w11*i11)

Input channel 0

>> 21

Output
channels

Feature maps

i02

2D Convolutional Layers

˃ Slide the window till one feature map is complete

With a given stride size

w00 w01

w10 w11

filter

i00

i10 i11

input

i02

i12

i20 i21 i22

* =

output

n00 n01

n10 n11

w00 w01

w10 w11

Stride = 1

>> 22

2D Convolutional Layers

˃ Compute next channel

w00 w01

w10 w11

filter

i00 i01

i10 i11

input

i02

i12

i20 i21 i22

* =

output

n00 n01

n10 n11

w00 w01

w10 w11

>> 23

Output
channels

2D Convolutional Layers
1 input and 1 output channel

˃ Can be lowered to a matrix-matrix multiply using a Toeplitz Matrix

w00 w01

w10 w11

filter

i00 i01

i10 i11

input

i02

i12

i20 i21 i22

* =

output

n00 n01

n10 n11

Convolution

Toeplitz Matrix (“lowered image matrix”)

w00 w01 w10 w11

filter
Matrix Vector

x

i00

i01

i11

i10

i01

i02

i11

i12

i10

i11

i20

i21

i11

i12

i21

i22

=

output

n00 n01 n10 n11

<=>

n00 = Act(w00*i00 + w01*i01+w10*i10 + w11*i11)

>> 24

2D Convolutional Layers
3 input and 2 output channels

w00 w01

w10 w11

filter

i00 i01

i10 i11

input

i02

i12

i20 i21 i22

* =

output

n00 n01

n10 n11
Convolution

filters

Matrix Matrix

output

<=>

w00 w01

w10 w11

…

Input channels

…

Output
channel 0,1

Toeplitz Matrix

IN_CH0

IN_CH1

IN_CH2

IN_CH0 IN_CH2
In

p
u

t
ch

an
n

e
l

Output
channels

OUT_CH0
=xData duplication for taking advantage of linear algebra libraries such as

OpenBLAS, cuBLAS, cuDNN

>> 25

Convolutions
Challenges

˃ Channel connectivity issue

Every input channel information broadcasts to every output channel

˃ Huge amounts of compute

Dense convolutions account for the majority of the compute

˃ Novel (Non-Dense) Convolutions

Less spatial convolutions (1x1) (SqueezeNet’s FireModules)

Connectivity reduction between in and out channels (Shuffle, Shift layers)

i0

i1

i2

n0

n1

nm-1

…

in-1

#I
N

_C
H

… #O
U

T_
C

H

100s to 1000 channels

=> Optimizations

>> 26

MODEL CONV [GOPS] FC [GOPS]
ResNet50 7.712 0.004

AlexNet 1.332 0.044

VGG16 30.693 0.247

Convolutions
Challenges

˃ Parallelization of compute across layers reduces memory bandwidth required for

buffering activations in between layers

˃ Pyramid-shaped data dependency between activations across layers

>> 27 Alwani, M., Chen, H., Ferdman, M. and Milder, P., 2016, October. Fused-layer CNN accelerators. Micro 2016

Pooling Layer

˃ Down-samplers of images

˃ Reduces compute in subsequent layers

˃ May use MAX or AVERAGE

˃ Compute:

Low amount of compute

Potentially replaceable with larger strides in
previous convolution

Max pool with 2x2 filters and stride of 2:

i00 i01

i10 i11

input

i02

i12

i20 i21 i22

i03

i13

i23

i30 i31 i32 i33

output

n00 n01

n10 n11

n00 = Max(i00, i01, i10, i11)

>> 28 *Springenberg, J. T., Dosovitskiy, A., Brox, T., & Riedmiller, M. (2014). Striving for Simplicity: The all convolutional net.

Recurrent Layer Types

˃ Contain state for processing sequences

For example needed in speech or optical character
recognition

“Apocal???”

˃ Uni-directional or bi-directional

“I ???? You”

˃ More sophisticated types to address the

vanishing gradients problem for learning more

than 5-10 timesteps

GRU (gated recurrent unit)

LSTM (long short term memory)

>> 29

i0

i1

i2

w00

w23

n0

n1

n2

n3

i0

i1

i2

w00

w23

n0

n1

n2

n3

Hopefully the AI Apocalypse won’t happen during my lifetime.

Recurrent Layers
Challenges in Additional Data Dependencies

˃ Input sequence

Unlike batch, additional data dependencies between inputs of the same sequence and state

˃ Bi-directional NNs

Full sequence needs to be completed before the next layer

>> 30

Meta-Layers

˃ Residual layers (ResNets *)

Introduced to make larger networks more trainable

Better gradient propagation through skip connections during
training

Plus 1x1 convolutions to reduce dimensionality and save
compute

˃ Inception layers (GoogleNet**)

Huge variation in spatial features => combining different
size convolutions in one layer

Plus 1x1 convolutions to reduce dimensionality and save
compute

Later on additional factorization to reduce compute

‒ 3x3 = 1x3 and 3x1

˃ Many more…

˃ Implementation: support for non-linear topologies!

>> 31
*He, K., Zhang, X., Ren, S. and Sun, J. "Deep residual learning for image recognition." CVPR’ 2016.
** Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J. and Wojna, Z. "Rethinking the inception architecture for computer vision." CVPR’ 2016.

+

CNV 3x3, 64, Relu

CNV 3x3, 64, Relu

+

CNV 3x3, 64, Relu

CNV 1x1, 256, Relu

CNV 1x1, 64, Relu

CNV 3x3

CNV 1x1

CNV 5x5

CNV 1x1

CNV 1x1

CNV 3x3
CNV 1x1

cc

Elementwise addition

Concatenation

Computation & Memory

Requirements

>> 32

Weights

Compute Activations

Compute and Memory Requirements
Architecture Neutral, Per Layer

Memory Requirements:
𝐴𝑡𝑜𝑡𝑎𝑙 = σ 𝐴𝑖

𝑊𝑡𝑜𝑡𝑎𝑙 = σ 𝑊𝑖

Compute Requirements:
𝑂𝑡𝑜𝑡𝑎𝑙 = σ 𝑂𝑖

>> 33

Compute Elements
Number of Operations : 𝑂𝑖

Layer i

Memory Elements
Weights 𝑊𝑖

Activations 𝐴𝑖

IN, IN_CH: number of inputs and input channels
OUT, OUT_CH: number of outputs and output channels
F_DIM, FM_DIM: filter and feature map dimensions (assumed square)
BATCH: batch size
BITS: bit precision in data types
GATES: number of gates in RNNs:
STATES: worst case
SEQ: sequence length
HID: hidden size (state + output from each state)
DIRS: 1 for unidirectional and 2 for bidirectional RNN

Weights

Wi

Inference

Compute

Oi

Activations

Ai

Activations

Ai+1

Inference:
Compute & Memory Analysis

>> 34

Fully Connected Layers:
𝑊𝑖 ≈ 𝐼𝑁𝑖 * 𝑂𝑈𝑇𝑖* BITS
𝐴𝑖 ≈ BATCH * 𝐼𝑁𝑖* BITS
𝑂𝑖 ≈ 2 ∗ 𝐵𝐴𝑇𝐶𝐻 ∗ 𝐼𝑁𝑖 ∗ 𝑂𝑈𝑇𝑖

Convolutional Layers:
𝑊𝑖 ≈ 𝐼𝑁_𝐶𝐻𝑖* 𝑂𝑈𝑇_𝐶𝐻𝑖* 𝐹_𝐷𝐼𝑀𝑖

2 * BITS
𝐴𝑖 ≈ 𝐵𝐴𝑇𝐶𝐻 ∗ 𝐹𝑀_𝐷𝐼𝑀𝑖

2 ∗ 𝐼𝑁_𝐶𝐻𝑖* BITS
𝑂𝑖 ≈ 2 ∗ 𝐵𝐴𝑇𝐶𝐻 ∗ 𝐹𝑀_𝐷𝐼𝑀𝑖

2 ∗ 𝐼𝑁_𝐶𝐻𝑖 ∗ 𝑂𝑈𝑇_𝐶𝐻𝑖* 𝐹_𝐷𝐼𝑀𝑖
2

Recurrent Layers:
𝑊𝑖 ≈ (𝐹𝑀_𝐷𝐼𝑀𝑖 + 𝐻𝐼𝐷𝑖)* 𝐻𝐼𝐷𝑖 * GATES * DIRS * BITS
𝐴𝑖 ≈ 𝐵𝐴𝑇𝐶𝐻 ∗ 𝐹𝑀_𝐷𝐼𝑀𝑖* DIRS * STATES * SEQ * BITS
𝑂𝑖 ≈ 2 ∗ (𝐹𝑀_𝐷𝐼𝑀𝑖 + 𝐻𝐼𝐷𝑖) * 𝐻𝐼𝐷𝑖 * GATES * DIRS * SEQ

Backpropagation

Weights

Wi

Activations

Ai

Activation

Gradients

AGi+1

Backprop

Compute

Gradients

OBAi

Activation

Gradients

AGi

Backpropagation & Training:
Compute & Memory Analysis

Backpropagation for 1 image or 1 sequence and 1 layer
𝑊𝐺𝑖 ≈ 𝑊𝑈𝑖 ≈ 𝑊𝑖 2x over inference
𝐴𝐺𝑖 ≈ 𝐴𝑖 = inference
𝑂𝐵𝑊𝑖 ≈ 𝑂𝐵𝐴𝑖 ≈ 𝑂𝑖 2x over inference
(𝑂𝐵𝑊𝑈𝑖 negligible)

Training 1 batch – all layers
𝐴𝐵𝑎𝑡𝑐ℎ ≈ 2 ∗ 𝐴
𝑊𝐵𝑎𝑡𝑐ℎ ≈ 3 * BATCH * W
𝑂𝐵𝑎𝑡𝑐ℎ ≈ 3 * 𝑂𝑖𝑛𝑓𝑒𝑟𝑒𝑛𝑐𝑒

Training overall
𝑂𝑂𝑣𝑒𝑟𝑎𝑙𝑙 ≈ 3 * #dataset * #epochs* 𝑂𝑖𝑛𝑓𝑒𝑟𝑒𝑛𝑐𝑒

Weight

Updates

WUi

Weight

Updates

OWUi

>> 35

Forward Pass

Weight

Gradients

WGi

Backprop

Compute

Weights

OBWi

BATCH: size of batch
#epochs: number of epochs
#datasets: number of inputs in dataset

Inference

Compute

Oi

Inference Compute and Memory
Across a Spectrum of Neural Networks

Inference (1 input)
GOPS

average

Inference (1 input)
MBytes

average

Spectrum of Neural Networks

MLP ImageNet Classification CNNs
Object

Detection
Semantic

Segmentation
OCR

Speech
Recognition

*architecture independent
**1 image forward
*** batch = 1
**** int8

G
O

P
S

an
d

 M
B

yt
es

re
sp

ec
ti

ve
ly

L3 Cache size Processor 1. Inference is hard
2. Huge Variation in Compute and Memory Requirements,

even within subgroups
3. Models typically don’t fit into cache

>> 36

Training Compute and Memory
Across a Spectrum of Neural Networks

Training (1 input)
MBytes

average

Training (1 input)
GOPS

average

Spectrum of Neural Networks

MLP ImageNet Classification CNNs
Object

Detection
Semantic

Segmentation
OCR

Speech
Recognition

*architecture independent
**1 image forward and backprop
*** batch = 1

1. Training is even harder (just for a 1single image!!)
2. Huge Variation in Compute and Memory Requirements,

even within subgroups

>> 37

G
O

P
S

an
d

 M
B

yt
es

re
sp

ec
ti

ve
ly

Rooflines*

*Williams, S., Waterman, A. and Patterson, D., 2009.
Roofline: an insightful visual performance model for multicore architectures. Communications of the ACM>> 38

Theoretical Peak Performance

Memory Bound

Number of Operations per Read/Write Byte in Memory

log
axes

Application

Arithmetic Intensity
Across a Spectrum of Neural Networks

˃ Memory requirement for weights, activations are beyond typically available on-chip memory

˃ This yields low arithmetic intensity

For example for inference, assuming weights off-chip and naïve implementation, majority of networks is
below 6OPS:Byte

>> 39

* batch = 1
** with respect to weights assuming
weights are off-chip

Inference

Jouppi, N.P., Young, C., Patil, N., Patterson, D., Agrawal, G., Bajwa, R., Bates,
S., Bhatia, S., Boden, N., Borchers, A. and Boyle, R., 2017, June. In-
datacenter performance analysis of a tensor processing unit. ISCA’2017

In Summary: CNNs are associated with…

˃ Significant amounts of memory and

computation

˃ Huge variation between topologies and

within them

˃ Fast changing algorithms

˃ Special functions, non-linear topologies

˃ However, incredibly parallel!
For convolutions: filter dimensions, feature map
dimensions, input & output channels, batches,
layers, and even precisions (discussed later)

>> 40

Adopted from Ce Zhang, ETH Zurich, Systems Group Retreat

Architectural Challenges/ Pain Points

>> 41

NN Inference/ Training Accelerator

Input samples

DRAM

Results

Activation Functions/ Pooling…

Weight Buffer

DMA

Input &
Activation
Buffering Compute Array

Huge amount of memory
spilling into DRAM

And variations

Weight & activation
fetching: bandwidth

throttles performance

Power consumption for
embedded

Latency in real-time
processing

Partial Sums

Huge amount of compute and variation-
Limited scalability with new technology nodes

Requires algorithmic & architectural innovation

Algorithmic Optimization Techniques

>> 42

Optimization Techniques

>> 43

Loop transformations to minimize memory access*

Pruning

Compression

Winograd, Strassen and FFT

Novel layer types (squeeze, shuffle, shift)

Numerical Representations & Reducing Precision

*Chen, Y.H., Krishna, T., Emer, J.S. and Sze, V., 2017. Eyeriss: An energy-efficient reconfigurable accelerator for deep
convolutional neural networks. IEEE Journal of Solid-State Circuits, 52(1), pp.127-13

Example: Reducing Bit-Precision

˃ Linear reduction in memory footprint

Reduces weight fetching memory bandwidth

NN model may even stay on-chip

˃ Reducing precision shrinks inherent arithmetic cost in both

ASICs and FPGAs

Instantiate 100x more compute within the same fabric and thereby
scale performance

Precision Modelsize [MB]
(ResNet50)

1b 3.2

8b 25.5

32b 102.5

C= size of accumulator * size of weight * size of activation
(to appear in ACM TRETS SE on DL, FINN-R)

>> 44

Assumptions: Application can fill device to 90% (fully parallelizable) 710MHz

Reducing Precision provides Performance Scalability
Example: ResNet50, ResNet152 and TinyYolo

RP reduces model size=> to stay on-chip

Theoretical Peak Performance for a VU13P with different Precision Operations

>> 45

Reducing Precision Inherently Saves Power

Source: Bill Dally (Stanford), Cadence Embedded Neural

Network Summit, February 1, 2017

Target Device ZU7EV ● Ambient temperature: 25 °C ● 12.5% of toggle rate ● 0.5 of Static

Probability ● Power reported for PL accelerated block only

2/2

0.500 0.700 0.900 1.100 1.300 1.500 1.700 1.900 2.100

8

10

12

14

16

18

20

Estimated Power Consumption [W]

T
e

s
t
e

rr
o

r
[%

]

LSTM - Test Error vs Power(W)

Bits (W/A)

Pareto Optimal

>> 46
Rybalkin, V., Pappalardo, A., Ghaffar, M.M., Gambardella, G., Wehn, N. and Blott, M. "FINN-L: Library Extensions and Design Trade-
off Analysis for Variable Precision LSTM Networks on FPGAs."

FPGA:

ASIC:

2/3

3/4

2/4
2/8

4/4

3/8
8/8

3/3

4/8

RPNNs: Closing the Accuracy Gap

>> 47

Float point improvements are slowing down
Reduced precision highly competitive and rapidly improving
BNNs and TNNs are still rapidly improving <10% top5

Latest numbers: Dongqing Zhang∗ , Jiaolong Yang∗ , Dongqiangzi Ye∗ , and Gang Hua
“LQ-Nets: Learned Quantization for Highly Accurate and Compact Deep Neural Networks”

0.00

5.00

10.00

15.00

20.00

25.00

30.00

1.0 10.0 100.0 1000.0 10000.0 100000.0 1000000.0 10000000.0 100000000.0 1000000000.0

V
A

L.
 E

R
R

O
R

 (
%

)

COMPUTE COST (LUTS + 100*DSPS)

IMAGENET CLASSIFICATION TOP5% VS COMPUTE COST F(LUT,DSP)

1b weights 2b weights 5bit weights 8bit weights FP weights minifloat ResNet-50 Syq

Design Space Trade-Offs

Resnet18
8b/8b
Compute Cost 286
Error 10.68%

Resnet50
2b/8b
Compute Cost 127
Error 9.86% Reduced Precision can provide better accuracy and lower

hardware cost for specific accuracy targets
In order to find optimal solutions, solution space needs to be
considered and allow for algorithmic freedom

Pareto-optimal solutions

Hardware Architectures and their

Specialization Towards CNN Workloads

Exciting Times in Computer

Architecture Research!

>> 49

Spectrum of New Architectures for Deep Learning

CPUs GPUs
Soft DPUs

(FPGA)
Hard DPUs

(ASIC)

TPU, Cerebras, Graphcore,
Groq, Nervana, Wave
Computing, Eyeriss,
Movidius, Kalray

Intel
AMD
ARM

AMD
NVIDIA

DeePhi
Teradeep
XDNN

DPU: Deep Learning Processing Unit

>> 50

In-Memory
Compute

Using non-volatile
resistive memories
or
stacked DRAM*

*Shafiee, A., Nag, A., Muralimanohar, N., Balasubramonian, R., Strachan, J.P., Hu, M., Williams, R.S. and Srikumar, V., 2016. ISAAC: A convolutional neural
network accelerator with in-situ analog arithmetic in crossbars. ACM SIGARCH
Chi, P., Li, S., Xu, C., Zhang, T., Zhao, J., Liu, Y., Wang, Y. and Xie, Y., 2016, June. Prime: A novel processing-in-memory architecture for neural network
computation in reram-based main memory. In ACM SIGARCH
Chen, Y., Luo, T., Liu, S., Zhang, S., He, L., Wang, J., Li, L., Chen, T., Xu, Z., Sun, N. and Temam, O., 2014, December. Dadiannao: A machine-learning
supercomputer. In Proceedings of the 47th Annual IEEE/ACM International Symposium on Microarchitecture (pp. 609-622). IEEE Computer Society.

ISAAC, Tetris,
Neurcube

Vector-based SIMD processors
becoming increasingly customized for Deep Learning

(Tensor Cores, Reduced Precision,…)

Architectural Choices – Macro-Architecture

Soft DPUs
(FPGA)

Hard DPUs
(ASIC)

Customized
macro-architecture

(Synchronous Dataflow)

TPU, Cerebras, Graphcore,
Groq, Nervana, Wave
Computing, Eyeriss,
Movidius, Kalray

MSR Brainwave*

FINN**

DeePhi
Teradeep
XDNN

>> 51

*Chung, E., Fowers, J., Ovtcharov, K., Papamichael, M., Caulfield, A., Massengill, T., Liu, M., Lo, D., Alkalay, S., Haselman, M.
and Abeydeera, M.Serving DNNs in Real Time at Datacenter Scale with Project Brainwave. IEEE Micro, 38(2)
https://www.microsoft.com/en-us/research/uploads/prod/2018/06/ISCA18-Brainwave-CameraReady.pdf
**Umuroglu, Yaman, Umuroglu, Y., Fraser, N.J., Gambardella, G., Blott, M., Leong, P., Jahre, M. and Vissers, K. “FINN: A
framework for fast, scalable binarized neural network inference.” ISFPGA’2017

Matrix of PE

https://www.microsoft.com/en-us/research/uploads/prod/2018/06/ISCA18-Brainwave-CameraReady.pdf

Synchronous Dataflow (SDF) vs
Matrix of Processing Elements (MPE)

𝑨𝑻𝒎𝒆𝒎𝒐𝒓𝒚 = 𝑺𝒖𝒎(𝑨𝑻𝒊)

𝑨𝑻𝒊 = 𝒃𝒂𝒕𝒄𝒉 ∗ 𝑭𝑴𝒊𝑫𝑰𝑴 ∗ 𝑪𝑯𝒊 ∗ 𝑲𝒊 + 𝑺𝒊

>> 52

CNV
Layer

Weight

WeightsActivations
Ping-pong

CNV
Layer

Weights

CNV
Layer

Weights 𝑾𝑪𝒎𝒆𝒎𝒐𝒓𝒚 = 𝑴𝑨𝑿 𝑾𝒊

𝑨𝑻𝒎𝒆𝒎𝒐𝒓𝒚 =

𝟐 ∗ 𝒃𝒂𝒕𝒄𝒉 ∗ 𝑴𝒂𝒙(𝑭𝑴𝒊𝑫𝑰𝑴 ∗ 𝑭𝑴𝒊𝑫𝑰𝑴 ∗ #𝑪𝑯𝒊)

𝑾𝑪𝒎𝒆𝒎𝒐𝒓𝒚 = 𝑺𝑼𝑴 𝑾𝒊

End points are pure layer-by-layer compute and feed-forward dataflow architecture

Spectrum of Options

MAC, Vector Processor

Lin, X., Yin, S., Tu, F., Liu, L., Li, X. and Wei, S. LCP: a layer clusters paralleling mapping method for accelerating inception and residual networks on FPGA. DAC’2016
Alwani, M., Chen, H., Ferdman, M. and Milder, P. Fused-layer CNN accelerators. MICRO 2016.

>> 53

Degree of parallelization
across layers

• Requires less activation buffering

• Higher compute and memory efficiency due to
custom-tailored hardware design

• Less flexibility

• Less latency (reduced buffering)

• No control flow (static schedule)

• Requires less on-chip weight memory, but more
activation buffers

• Efficiency of memory for weights and activations
depends on how well balanced the topology is

• Flexible hardware, which can scale to arbitrary large
networks

• Compute efficiency is a scheduling problem
=> generating sophisticated scheduling algorithms

Synchronous Dataflow (SDF) vs
Matrix of Processing Elements (MPE)

Architectural Choices – Micro-Architecture

CPUs GPUs
Soft DPUs

(FPGA)
Hard DPUs

(ASIC)

Customized
arithmetic

TPU, Cerebras, Graphcore,
Groq, Nervana, Wave
Computing, Eyeriss,
Movidius, Kalray

Intel
AMD
ARM

AMD
NVIDIA

MSR Brainwave

FINN

BISMO

DeePhi
Teradeep
XDNN

>> 54

Stripes (bit-serial ASIC),
Stanford, Leuven: BinarEye
IBMs’ TrueNorth & latest AI
accelerator

Judd, P., Albericio, J., Hetherington, T., Aamodt, T.M. and Moshovos, A., 2016, October. Stripes: Bit-serial deep neural network computing. MICRO’2016
Moons, B., Bankman, D., Yang, L., Murmann, B. and Verhelst, M. BinarEye: An always-on energy-accuracy-scalable binary CNN processor with all memory on
chip in 28nm CMOS, ICC’2018
Lin, X., Yin, S., Tu, F., Liu, L., Li, X. and Wei, S. LCP: a layer clusters paralleling mapping method for accelerating inception and residual networks on FPGA.
DAC’2016

Micro-Architecture:
Customized Arithmetic for Specific Numerical Representations

˃ Customizing arithmetic compute allows to maximize

performance at minimal accuracy loss

Flexpoint, Microsoft Floating Point formats, Binary & Ternary,
Bfloat16

˃ Which do we support?

Perhaps too risky to support numerous, and too risky to fix on one?

˃ What’s more, non-uniform arithmetic can yield more efficient

hardware implementations for a fixed accuracy*

Run-time programmable precision: Bit-Serial

>> 55
*Eunhyeok Park, Junwhan Ahn, and Sungjoo Yoo, “Weighted-Entropy-based Quantization for Deep Neural Networks” CVPR’2017]

Micro-Architecture:
Bit-Parallel vs Bit-Serial

˃ Bit-serial can provide run-time programmable precision with a fixed architecture
ASIC* or FPGA** overlay

˃ FPGA: Flexibility comes at almost no cost and provides equivalent bit-level performance at chip-

level for low precision*

Bit parallel

MAC

A(n)

B(n)

O(m)

Bit serial

MAC

A(n)

B(n)

O(m)

A(n)

Latency vs resource

trade-off

>> 56
*Judd, P., Albericio, J., Hetherington, T., Aamodt, T.M. and Moshovos, A., 2016, October. Stripes: Bit-serial deep neural network computing. MICRO’2016
**Umuroglu, Rasnayake, Sjalander"BISMO: A Scalable Bit-Serial Matrix Multiplication Overlay for Reconfigurable Computing." FPL’2018
https://arxiv.org/pdf/1806.08862.pdf

https://arxiv.org/pdf/1806.08862.pdf

Summary

>> 57

Summary

˃ CNNs are increasingly being adopted for new workloads and key to the current

industrial revolution and perhaps the next

˃ Associated with significant challenges

˃ Requires algorithmic and architectural innovation (co-designed)

˃ Emerging: Huge spectrum of algorithms and increasingly diverse & heterogenous

hardware architectures

˃ Clear metrics for comparison needed

Hardware performance always tying back to application performance (accuracy) to allow for
algorithmic optimizations

Ideally in form of pareto curves: Accuracy - performance (TOPS/sec) - response time (1 input) -
power consumption

>> 58

Exciting Times for our Community:
Many New Architectures Evolving - Programmable and Hardened

Application:

Algorithm:

Dataset:

Hardware:

Implementation:

>> 59

• Finding optimal solutions within a multi-dimensional design space
combinations trained network topologies on different datasets implemented in
different ways on different hardware architectures

Adaptable.

Intelligent.

>> 60

THANK YOU!

Part 1 - Agenda

˃ Neural Networks

˃ Computation & Memory Requirements

˃ Algorithmic Optimization Techniques

˃ Hardware Architectures

>> 61

Learning Paradigms

Supervised
Learning

Unsupervised
Learning

Reinforcement
Learning

Data with
Labels

Data without
Labels

States &
Actions

Output
(Mapping)

Output
(Classes, Structures)

Output
(State/Action)

Observer

Reward

>> 62

Batches*

˃ Batch:

Collection of inputs buffered to capitalize on parallelism

˃ Batches in Inference:

Intention is to maximize the compute per loaded weights, helps increase compute efficiency
when weight memory bound

‒ Weight_bandwidth = weights*frame-rate/batch

Downside: adverse effects on latency:

‒ Latency >= batch_size * 1/frame rate

˃ Batches in Training:

Batch size (mini-batch or iteration size) also dictates at what intervals weight updates
happen)

Larger batch sizes require more memory, and can have potentially adverse effects on
accuracy, and smaller batches might have adverse effects on training time

*Caution: Overloaded Terms!

>> 63

